Skip to main content

Deviations from Bulk Glass Transition Dynamics of Small Molecule Glass Formers: Some Scenarios in Relation to the Dimensionality of the Confining Geometry

  • Chapter
  • First Online:
Dynamics in Geometrical Confinement

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Deviations from the bulk behavior of the temperature dependence of the structural relaxation time \(\tau \)(T), typically well described by the Vogel-Fulcher-Tammann (VFT) relation, are the most obvious signature for “confinement effects,” which comprise various scenarios ranging from slight changes in the VFT parameters to cases where the VFT behavior completely breaks down to an Arrhenius law. An attractive idea that has finally stimulated many studies on nanoconfined glass formers is the concept of cooperativity with a cooperative length scale \(\xi \) that dates back to Adams Gibbs and is also a subject of modern concepts for the description of glasses and supercooled liquids. In this chapter, we discuss the question in how far experiments on glass-forming liquids, confined to nanometer-sized geometries, can prove the cooperative nature and of the dynamic glass transition and provide quantitative information about its characteristic length scale \(\xi \). Here, we have particularly focused on experimental evidence regarding deviations of \(\tau \)(T) from the bulk behavior. To classify experimental findings from very diverse systems, we introduce three major “deviation scenarios,” which range from a complete breakdown of the VFT-law (type I) via a VFT-Arrhenius cross-over scenario (type II) to a scenario (III) representing a perturbed VFT behavior in terms of an overall accelerated or retarded glass transition dynamics. Four cases are discussed in detail, all of them referring to H-bonding molecules or molecular groups. EG confined in various zeolitic hosts revealed either bulk dynamics or the scenario I, while EG mixed with amylopectine (starch) showed an evolution through the cross-over scenario (II) toward genuine Arrhenius behavior (I). A third system, representing a H-bonding “liquid” confined to a self-assembled (smectic) layer structure, yielded a clear-cut scenario II along with a linear relation between the layer thickness and the cross-over frequency. Subsequently, the dynamics of ultrathin films of glycerol having one free surface was discussed as an example for a perturbated VFT-scenario (type III). Apart from all molecular details and the diversity of confining host structures, it is evident that the strength of the confinement, expressed by the number of spatially restricted dimensions (1D \(=\) layer, 3D \(=\) cavities), should be linked to the severeness of changes in the dynamics. Inventarization of various experimental findings reported in the literature including them described above indeed confirm a correlation between the “deviation scenario” and the number of constrained axes. Finally, the effect of mechanisms other than cooperativity arguments, e.g., surface interactions, density, packing, and orientation effects, will briefly be discussed to rationalize obvious exceptions from the proposed correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:

Aluminum

\(\alpha \)-:

Structural relaxation process

AFM:

Atomic force microscopy

AG:

Adams-Gibbs (approach)

AP:

Amylopectine

BDS:

Broadband dielectric spectroscopy

CRR:

Cooperatively rearranging regions

DRS:

Dielectric relaxation spectroscopy

DSC:

Differential scanning calorimetry

\(\Delta \varepsilon \) :

Dielectric strength

\(s\) :

Electrical conductivity

EG:

Ethylene glycol

\(\varepsilon _{\infty }\) :

nstantaneous dielectric constant

\(g\) :

Kirkwood factor

\(h\) :

Film thickness

HN:

Havriliak-Negami (function)

\(k_{\mathrm{B}}\) :

Boltzmann constant

MCT:

Mode-coupling theory

min:

Minute(s)

mol:

Mole(s)

\(M_{\mathrm{w}}\) :

Weight average molecular weight

OMBD:

Organic molecular beam deposition

\(\xi \) :

Cooperativity lengthCooperativity length

\(\tau _{\alpha }\) :

(Structural) relaxation time

\(\tau \) :

Relaxation time

\(t\) :

Time

\(T\) :

Temperature

\(T_{\mathrm{g}}\) :

Glass transition temperature

VFT:

Vogel-Fulcher-Tammann (equation)

1D:

One-dimensional

References

  1. Vogel H (1921) Z Phys 22:645

    CAS  Google Scholar 

  2. Fulcher GS (1925) J Am Ceram Soc 6:339

    Article  Google Scholar 

  3. Tammann G, Hesse G (1926) Z Anorg Allg Chem 156:245

    Article  Google Scholar 

  4. Adam G, Gibbs JH (1965) J Chem Phys 43:139

    Article  CAS  Google Scholar 

  5. Lubchenko V, Wolynes PG (2007) Ann Rev Phys Chem 58:23

    Google Scholar 

  6. Tanaka H (2012) Eur Phys J E 35:113

    Article  Google Scholar 

  7. Yamchi MZ, Ashwin SS, Bowles RK (2012) Phy Rev Lett 109:225701

    Google Scholar 

  8. Hedstrom J, Swenson J, Bergman R, Jansson H, Kittaka S (2007) Eur Phys J Spec Top 141:53

    Article  Google Scholar 

  9. Donth E (2002) J Non-Cryst Solids 307:364

    Article  Google Scholar 

  10. Hempel E, Vieweg S, Huwe A, Otto K, Schick C, Donth E (2000) J De Phys Iv 10:79

    Google Scholar 

  11. Cangialosi D, Alegria A, Colmenero J (2007) Phys Rev E 76:011514

    Google Scholar 

  12. van Turnhout J, Wübbenhorst M (2002) J. Non-Cryst. Solids 305:50

    Article  Google Scholar 

  13. Napolitano S, Lupascu V, Wübbenhorst M (2008) Macromolecules 41:1061

    Article  CAS  Google Scholar 

  14. Arndt M, Stannarius R, Groothues H, Hempel E, Kremer F (1997) Phys Rev Lett 79:2077

    Article  CAS  Google Scholar 

  15. Napolitano S, Pilleri A, Rolla PA, Wübbenhorst M (2010) ACS Nano 4:841

    Article  CAS  Google Scholar 

  16. McKenna GB (2010) Eur Phys J Spec Top 189:285

    Article  Google Scholar 

  17. Wübbenhorst M, Klap GJ, Jansen JC, van Bekkum H, van Turnhout J (1999) J Chem Phys 111:5637

    Article  Google Scholar 

  18. Lagrene K, Zanotti JM (2007) Eur Phys J Spec Top 141:261

    Article  Google Scholar 

  19. Dobbertin J, Hensel A, Schick C (1996) J Therm Anal 47:1027

    Article  CAS  Google Scholar 

  20. Anastasiadis SH, Karatasos K, Vlachos G, Manias E, Giannelis EP (2000) Phys Rev Lett 84:915

    Article  CAS  Google Scholar 

  21. Wübbenhorst M, Capponi S, Napolitano S, Rozanski S, Couderc G, Behrnd NR, Hulliger J (2010) Eur Phys J Spec Top 189:181

    Google Scholar 

  22. Beiner M (2001) Macromol Rapid Commun 22:869

    Article  Google Scholar 

  23. Starkweather HW (1991) Polymer 32:2443

    Article  CAS  Google Scholar 

  24. Eyring E (1936) J Chem Phys 4:283

    Article  CAS  Google Scholar 

  25. Huwe A, Kremer F, Behrens P, Schwieger W (1999) Phys Rev Lett 82:2338

    Article  CAS  Google Scholar 

  26. Bibby DM, Dale MP (1985) Nature 317:157

    Article  CAS  Google Scholar 

  27. Meier WM, Olson DH, Baerlocher C (1996) Atlas of Zeolite structure types. Elsevier, Amsterdam

    Google Scholar 

  28. Havriliak S, Negami S (1967) Polymer 8:161

    Article  CAS  Google Scholar 

  29. Jordan BP, Sheppard EJ, Szwarnowski S (1978) J Phys D 11:695

    Article  CAS  Google Scholar 

  30. Cusack NE (1987) The physics of structurally disordered matter. Adam Hilger, Bristol

    Google Scholar 

  31. Smits ALM, Wübbenhorst M, Kruiskamp PH, van Soest JJG, Vliegenthart JFG, van Turnhout J (2001) J Phys Chem B 105:5630

    Google Scholar 

  32. Smits ALM, Hulleman SHD, van Soest JJG, Feil H, Vliegenthart JFG (1999) Polym Adv Technol 10:570

    Article  CAS  Google Scholar 

  33. Kruiskamp PH, Smits ALM, Vliegenthart JFG (2001) Ind Microbiol Biotechnol 26:90

    Article  CAS  Google Scholar 

  34. Mertens IJA, Wübbenhorst M, Oosterbaan WD, Jenneskens LW, van Turnhout J (1999) Macromolecules 32:3314

    Article  CAS  Google Scholar 

  35. Wübbenhorst M, van Turnhout J (2002) J Non-Cryst Solids 305:40

    Article  Google Scholar 

  36. Donth E (1982) J Non-Cryst Solids 53:325

    Article  CAS  Google Scholar 

  37. Jansen JC (1996) PhD thesis. Delft University of Technology, Delft

    Google Scholar 

  38. Wübbenhorst M, Van Koten E, Jansen J, Mijs M, van Turnhout J (1997) Macromol Rapid Commun 18:139

    Article  Google Scholar 

  39. Wübbenhorst M, Van Eeten F, Van Turnhout J (2014) Manuscript in preparation

    Google Scholar 

  40. Yildirim Z, Wübbenhorst M, Mendes E, Picken SJ, Paraschiv I, Marcelis ATM, Zuilhof H, Sudhölter EJR (2005) J Non-Cryst Solids 351:2622

    Article  CAS  Google Scholar 

  41. Jasiurkowska M, Napolitano S, Wübbenhorst M, Leys J, Juszyńska E, Massalska-Arodź M (2014) Manuscript in preparation

    Google Scholar 

  42. Donth E (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie, Berlin

    Google Scholar 

  43. Hempel E, Hempel G, Hensel A, Schick C, Donth E (2000) J Phys Chem B 104:2460

    Article  CAS  Google Scholar 

  44. de Gennes PG (2000) Eur Phys J E 2:201

    Article  Google Scholar 

  45. Forrest JA, Dalnoki-Veress K (2001) Adv Colloid Interface Sci 94:167

    Article  CAS  Google Scholar 

  46. Jones RAL (1999) Curr Opin Colloid Interface Sci 4:153

    Article  Google Scholar 

  47. Keddie JL, Jones RAL, Cory RA (1994) Faraday Discuss 98:219

    Article  CAS  Google Scholar 

  48. Napolitano S, Rotella C, Wübbenhorst M Acs Macro Lett 1:1189

    Google Scholar 

  49. Choa Y-K, Granick S (2003) J Chem Phys 119:547

    Article  Google Scholar 

  50. Zheng W, Simon SL (2007) J Chem Phys 127:194501

    Google Scholar 

  51. Simon SL, Park JY, McKenna GB (2002) Eur Phys J E 8:209

    Article  CAS  Google Scholar 

  52. Capponi S, Napolitano S, Behrnd N, Couderc G, Hulliger J, Wübbenhorst M (2010) J Phys Chem C 114:16696

    Article  CAS  Google Scholar 

  53. Peters S, Napolitano S, Meyer H, Wübbenhorst M, Baschnagel J (2008) Macromolecules 41:7729

    Article  Google Scholar 

  54. Lunkenheimer P, Pimenov A, Schiener B, Böhmer R, Loidl A (1996) Eur Lett 33:611

    Article  CAS  Google Scholar 

  55. Mobius ME, Xia T, van Saarloos W, Orrit M, van Hecke M (2010) J Phys Chem B 114:7439

    Article  CAS  Google Scholar 

  56. Zondervan R, Kulzer F, Berkhout GCG, Orrit M (2007) Proc Natl Acad Sci USA 104:12628

    Article  CAS  Google Scholar 

  57. Kilburn D, Sokol PE, Sakai VG, Alam MA (2008) Appl Phys Lett 92:1

    Article  Google Scholar 

  58. Levchenko AA, Jain P, Trofymluk O, Yu P, Navrotsky A, Sen S (2010) J Phys Chem B 114:3070

    Article  CAS  Google Scholar 

  59. Capponi S, Napolitano S, Wübbenhorst M (2012) Nat Commun 3:1233

    Article  Google Scholar 

  60. Schneider U, Lunkenheimer P, Brand R, Loidl A (1998) J Non-Cryst Solids 235:173

    Article  Google Scholar 

  61. Roth CB, Torkelson JM (2007) Macromolecules 40:3328

    Article  CAS  Google Scholar 

  62. Rotella C, Napolitano S, Wübbenhorst M (2009) Macromolecules 42:1415

    Article  CAS  Google Scholar 

  63. Lupascu V, Picken SJ, Wübbenhorst M (2006) J Non-Cryst Solids 352:5594

    Article  CAS  Google Scholar 

  64. Schonhals A, Goering H, Schick C, Frick B, Zorn R (2004) Colloid Polym Sci 282:882

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wübbenhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wübbenhorst, M., Napolitano, S. (2014). Deviations from Bulk Glass Transition Dynamics of Small Molecule Glass Formers: Some Scenarios in Relation to the Dimensionality of the Confining Geometry. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_10

Download citation

Publish with us

Policies and ethics