Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 394 Accesses

Abstract

Hyperbranched polymers have unique properties in solution, melt and bulk due to their branched and relatively compact structure in comparison with linear counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawker CJ, Chu F, Pomery PJ, Hill DJT (1996) Macromolecules 29:3831

    Google Scholar 

  2. Chen Y, Shen Z, Pastor-Pérez L, Frey H, Stiriba S-E (2004) Macromolecules 38:227

    Google Scholar 

  3. Liu CH, Gao C, Yan DY (2006) Macromolecules 39:8102

    Google Scholar 

  4. Cao Q, Liu P (2007) J Mater Sci 42:5661

    Google Scholar 

  5. Yang Y, Xie X, Yang Z, Wang X, Cui W, Yang J, Mai Y-W (2007) Macromolecules 40:5858

    Google Scholar 

  6. Voit BI, Lederer A (2009) Chem Rev 109:5924

    Google Scholar 

  7. Rique-Lurbet L, Schappacher M, Deffieux A (1994) Macromolecules 27:6318

    Google Scholar 

  8. Schappacher M, Deffieux A (1995) Macromolecules 28:2629

    Google Scholar 

  9. Benmouna M, Khaldi S, Bensafi A, Maschke U (1997) Macromolecules 30:1168

    Google Scholar 

  10. Tezuka Y, Komiya R, Washizuka M (2002) Macromolecules 36:12

    Google Scholar 

  11. Schulz M, Tanner S, Barqawi H, Binder WH (2010) J Polym Sci Pol Chem. 48:671

    Google Scholar 

  12. Xu J, Ye J, Liu S (2007) Macromolecules 40:9103

    Google Scholar 

  13. Lonsdale DE, Monteiro MJ (2010) Chem Commun 46:7945

    Article  CAS  Google Scholar 

  14. Hietala S, Strandman S, Järvi P, Torkkeli M, Jankova K, Hvilsted S, Tenhu H (2009) Macromolecules 42:1726

    Google Scholar 

  15. Hietala S, Mononen P, Strandman S, Järvi P, Torkkeli M, Jankova K, Hvilsted S, Tenhu H (2007) Polymer 48:4087

    Google Scholar 

  16. Plummer R, Hill DJT, Whittaker AK (2006) Macromolecules 39:8379

    Google Scholar 

  17. Shi G-Y, Sun J-T, Pan C-Y (2011) Macromol Chem Phys 212:1305

    Google Scholar 

  18. Wu Z, Liang H, Lu J (2010) Macromolecules 43:5699

    Google Scholar 

  19. Khanna K, Varshney S, Kakkar A (2010) Macromolecules 43:5688

    Google Scholar 

  20. Pitet LM, Chamberlain BM, Hauser AW, Hillmyer MA (2010) Macromolecules 43:8018

    Google Scholar 

  21. Gungor E, Durmaz H, Hizal G, Tunca U (2008) J Polym Sci Pol Chem. 46:4459

    Google Scholar 

  22. Turner SR, Voit BI, Mourey TH (1993) Macromolecules 26:4617

    Google Scholar 

  23. Ghosh A, Banerjee S, Komber H, Lederer A, Häussler L, Voit B (2010) Macromolecules 43:2846

    Google Scholar 

  24. Scheel AJ, Komber H, Voit BI (2004) Macromol Rapid Comm 25:1175

    Google Scholar 

  25. Yang H, Xu J, Pispas S, Zhang G (2013) RSC Advances

    Google Scholar 

  26. Hawker CJ, Frechet JMJ, Grubbs RB, Dao J (1995) J Am Chem Soc 117:10763

    Google Scholar 

  27. Xu J (2009) Macromolecules 42:6893

    Google Scholar 

  28. Zimm BH, Stockmayer WH (1949) J Chem Phys. 17:1301

    Google Scholar 

  29. de Gennes PG (1968) Biopolymers 6:715

    Google Scholar 

  30. Trollsås M, Hedrick JL (1998) Macromolecules 31:4390

    Google Scholar 

  31. Choi J, Kwak S-Y (2003) Macromolecules 36:8630

    Google Scholar 

  32. Trollsas M, Kelly MA, Claesson H, Siemens R, Hedrick JL (1999) Macromolecules 32:4917

    Google Scholar 

  33. Peleshanko S, Gunawidjaja R, Petrash S, Tsukruk VV (2006) Macromolecules 39:4756

    Google Scholar 

  34. Tsarevsky NV, Huang J, Matyjaszewski K (2009) J Polym Sci Pol Chem. 47:6839

    Google Scholar 

  35. Wang W-J, Wang D, Li B-G, Zhu S (2010) Macromolecules 43:4062

    Google Scholar 

  36. Zhou Z, Yan D (2010) Sci China Chem 53:2429

    Google Scholar 

  37. Liu M, Vladimirov N, Fréchet JMJ (1999) Macromolecules 32:6881

    Google Scholar 

  38. Magnusson H, Malmström E, Hult A (1999) Macromol Rapid Comm 20:453

    Google Scholar 

  39. Konkolewicz D, Gray-Weale A, Perrier SB (2009) J Am Chem Soc 131:18075

    Google Scholar 

  40. Trollsas M, Atthoff B, Claesson H, Hedrick JL (1998) Macromolecules 31:3439

    Google Scholar 

  41. Zhu Z, Pan C (2007) Macromol Chem Phys 208:1274

    Google Scholar 

  42. Vanjinathan M, Shanavas A, Raghavan A, Nasar AS (2007) J Polym Sci Pol Chem 45:3877

    Google Scholar 

  43. Hutchings LR, Dodds JM, Roberts-Bleming SJ (2006) Macromol Symp 240:56

    Google Scholar 

  44. Hutchings LR (2008) Soft Matter 4:2150

    Google Scholar 

  45. Clarke N, Luca ED, Dodds JM, Kimani SM, Hutchings LR (2008) Eur Polym J 44:665

    Google Scholar 

  46. Hutchings LR, Dodds JM, Roberts-Bleming SJ (2005) Macromolecules 38:5970

    Google Scholar 

  47. Kong L-Z, Sun M, Qiao H-M, Pan C-Y (2010) J Polym Sci Pol Chem 48:454

    Google Scholar 

  48. Li J, Sun M, Bo Z (1084) J Polym Sci Pol Chem 2007:45

    Google Scholar 

  49. Adam M, Delsanti M, Munch JP, Durand DJ (1809) Physique Paris 1987:48

    Google Scholar 

  50. Unal S, Yilgor I, Yilgor E, Sheth JP, Wilkes GL, Long TE (2004) Macromolecules 37:7081

    Google Scholar 

  51. Unal S, Ozturk G, Sisson K, Long TE (2008) J Polym Sci Pol Chem 46:6285

    Google Scholar 

  52. Liu D, Zeng S, Hu Q, Yi C, Xu Z (2010) Polym Bull 64:877

    Google Scholar 

  53. Fornof AR, Glass TE, Long TE (2006) Macromol Chem Phys 207:1197

    Google Scholar 

  54. Oguz C, Unal S, Long TE, Gallivan MA (2007) Macromolecules 40:6529

    Google Scholar 

  55. Kong J, Schmalz T, Motz G, Müller AHE (2011) Macromolecules 44:1280

    Google Scholar 

  56. Emrick T, Chang H-T, Fréchet JMJ (1999) Macromolecules 32:6380

    Google Scholar 

  57. Fréchet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc MR, Grubbs RB (1080) Science 1995:269

    Google Scholar 

  58. Takano A, Ohta Y, Masuoka K, Matsubara K, Nakano T, Hieno A, Itakura M, Takahashi K, Kinugasa S, Kawaguchi D, Takahashi Y, Matsushita Y (2011) Macromolecules 45:369

    Google Scholar 

  59. Mourey TH, Turner SR, Rubinstein M, Frechet JMJ, Hawker CJ, Wooley KL (1992) Macromolecules 25:2401

    Article  CAS  Google Scholar 

  60. Lu YY, Shi TF, An LJ, Wang ZG (2012) Europhys Lett 97:64003

    Google Scholar 

  61. Lu Y, Shi T, An L, Jin L, Wang Z-G (2010) Soft Matter 6:2619

    Google Scholar 

  62. Lederer A, Voigt D, Clausnitzer C, Voit B (2002) J Chromatogr A 976:171

    Google Scholar 

  63. Rubinstein M, Colby RH (2003) Polymer Physics. Oxford University Press, New York

    Google Scholar 

  64. Teraoka I (2002) Polymer solutions: an introduction to physical properties. Wiley, New Jersey

    Google Scholar 

  65. Halperin A (1991) Macromolecules 24:1418

    Google Scholar 

  66. Spontak RJ, Fung JC, Braunfeld MB, Sedat JW, Agard DA, Ashraf A, Smith SD (1996) Macromolecules 29:2850

    Google Scholar 

  67. Hlavata D, Horak Z, Lednicky F, Hromadkova J, Pleska A, Zanevskii YV (2001) J Polym Sci Pol Phys 39:931

    Google Scholar 

  68. You YZ, Zhou QH, Manickam DS, Wan L, Mao GZ, Oupicky D (2007) Macromolecules 40:8617

    Google Scholar 

  69. Hugouvieux V, Axelos MAV, Kolb M (2008) Macromolecules 42:392

    Google Scholar 

  70. Hadjiantoniou NA, Krasia-Christoforou T, Loizou E, Porcar L, Patrickios CS (2010) Macromolecules 43:2713

    Google Scholar 

  71. Eastwood EA, Dadmun MD (2001) Macromolecules 34:740

    Google Scholar 

  72. Eastwood EA, Dadmun MD (2002) Macromolecules 35:5069

    Google Scholar 

  73. Hong L, Zhu F, Li J, Ngai T, Xie Z, Wu C (2008) Macromolecules 41:2219

    Google Scholar 

  74. Zhang Q (2008) Macromolecules 41:2228

    Google Scholar 

  75. Hu J, Ge Z, Zhou Y, Zhang Y, Liu S (2010) Macromolecules 43:5184

    Google Scholar 

  76. Ge Z, Zhou Y, Tong Z, Liu S (2011) Langmuir 27:1143

    Google Scholar 

  77. Konkolewicz D, Poon CK, Gray-Weale A, Perrier S (2010) Chem Commun 47:239

    Google Scholar 

  78. Chen H, Li J, Ding Y, Zhang G, Zhang Q, Wu C (2005) Macromolecules 38:4403

    Google Scholar 

  79. Hao J, Yuan G, He W, Cheng H, Han CC, Wu C (2002) Macromolecules 2010:43

    Google Scholar 

  80. Dworak A, Kowalczuk-Bleja A, Trzebicka B, Walach W (2002) Polym Bull 49:9

    Google Scholar 

  81. Kowalczuk-Bleja A, Sierocka B, Muszyński J, Trzebicka B, Dworak A (2005) Polymer 46:8555

    Google Scholar 

  82. Zhang C, Zhou Y, Liu Q, Li S, Perrier Sb, Zhao Y (2011) Macromolecules 44:2034

    Google Scholar 

  83. Kali G, Szesztay M, Bodor A, Iván B (2007) Macromol Chem Phys 208:1388

    Google Scholar 

  84. Hu T, Wu C (2001) Macromolecules 34:6802

    Google Scholar 

  85. Li L, Yang J, Zhou J (2013) Macromolecules 46:2808

    Google Scholar 

  86. Li L, Zhou J, Wu C (2012) Macromolecules 45:9391

    Google Scholar 

  87. Qiu X, Wu C (1997) Macromolecules 30:7921

    Google Scholar 

  88. Wu C, Qiu X (1998) Phys Rev Lett 80:620

    Google Scholar 

  89. Zhang G, Winnik FM, Wu C (2003) Phys Rev Lett 90:035506

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwei Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, L. (2014). Introduction and Background. In: Studies on "Perfect" Hyperbranched Chains Free in Solution and Confined in a Cylindrical Pore. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06097-2_1

Download citation

Publish with us

Policies and ethics