Skip to main content

Intersection Dimension of Bipartite Graphs

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8402))

Abstract

We introduce a concept of intersection dimension of a graph with respect to a graph class. This generalizes Ferrers dimension, boxicity, and poset dimension, and leads to interesting new problems. We focus in particular on bipartite graph classes defined as intersection graphs of two kinds of geometric objects. We relate well-known graph classes such as interval bigraphs, two-directional orthogonal ray graphs, chain graphs, and (unit) grid intersection graphs with respect to these dimensions. As an application of these graph-theoretic results, we show that the recognition problems for certain graph classes are NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiga, A., Bhowmick, D., Chandran, L.S.: Boxicity and poset dimension. SIAM J. Discrete Math. 25, 1687–1698 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellatoni, S., Hartman, I.B.-A., Przytycka, T., Whitesides, S.: Grid intersection graphs and boxicity. Discrete Math. 114(1-3), 41–49 (1993)

    Article  MathSciNet  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. Journal of Computer System Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)

    Google Scholar 

  5. Breu, H.: Algorithmic aspects of constrained unit disk graphs. PhD thesis, The University of British Columbia, AAINN09049 (1996)

    Google Scholar 

  6. Chandran, L.S., Das, A., Shah, C.D.: Cubicity, boxicity, and vertex cover. Discrete Math. 309, 2488–2496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chandran, L.S., Francis, M., Mathew, R.: Chordal bipartite graphs with high boxicity. Graphs Combin. 27, 353–362 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang, Y.-W., West, D.B.: Rectangle number for hypercubes and complete multipartite graphs. In: 29th SE Conf. Comb., Graph Th. and Comp. Congr. Numer., vol. 132, pp. 19–28 (1998)

    Google Scholar 

  9. Chatterjee, S., Ghosh, S.: Ferrers dimension and boxicity. Discrete Math. 310, 2443–2447 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cogis, O.: On the Ferrers dimension of a digraph. Discrete Math. 38, 47–52 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM Journal on Discrete Mathematics 23, 1905–1953 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19, 487–505 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Felsner, S.: The order dimension of planar maps revisited. In: JCDCGG 2013, pp. 18–19 (2013)

    Google Scholar 

  14. Felsner, S., Mertzios, G.B., Mustaţǎ, I.: On the recognition of four-directional orthogonal ray graphs. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 373–384. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Annals of Discrete Mathematics, vol. 57. North Holland (2004)

    Google Scholar 

  16. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Appl. Math. 28, 35–44 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math. 87(1), 41–52 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Hell, P., Huang, J.: Two remarks on circular arc graphs. Graphs Combin. 13, 65–72 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46, 313–327 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hell, P., Mastrolilli, M., Nevisi, M.M., Rafiey, A.: Approximation of minimum cost homomorphisms. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 587–598. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Klinz, B., Rudolf, R., Woeginger, G.J.: Permuting matrices to avoid forbidden submatrices. Discrete Appl. Math. 60, 223–248 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MATH  MathSciNet  Google Scholar 

  25. Müller, H.: Recognizing interval digraphs and interval bigraphs in polynomial time. Discrete Appl. Math. 78(1-3), 189–205 (1997), Erratum is available at http: http://www.comp.leeds.ac.uk/hm/pub/node1.html

    Article  MATH  MathSciNet  Google Scholar 

  26. Mustaţǎ, I., Pergel, M.: Unit grid intersection graphs: Recognition and properties. CoRR, abs/1306.1855 (2013)

    Google Scholar 

  27. Otachi, Y., Okamoto, Y., Yamazaki, K.: Relationships between the class of unit grid intersection graphs and other classes of bipartite graphs. Discrete Appl. Math. 155, 2383–2390 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rao, W., Orailoglu, A., Karri, R.: Logic mapping in crossbar-based nanoarchitectures. IEEE Des. Test 26, 68–77 (2009)

    Article  Google Scholar 

  29. Saha, P.K., Basu, A., Sen, M.K., West, D.B.: Permutation bigraphs: An analogue of permutation graphs, http://www.math.uiuc.edu/~west/pubs/permbig.pdf

  30. Sen, M., Das, S., Roy, A.B., West, D.B.: Interval digraphs: An analogue of interval graphs. J. Graph Theory 13, 189–202 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sen, M.K., Sanyal, B.K., West, D.B.: Representing digraphs using intervals or circular arcs. Discrete Math. 147, 235–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shrestha, A.M.S., Tayu, S., Ueno, S.: On orthogonal ray graphs. Discrete Appl. Math. 158, 1650–1659 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Spinrad, J.P., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete Appl. Math. 18(3), 279–292 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Spinrad, J.P.: Doubly lexical ordering of dense 0-1 matrices. Inform. Process. Lett. 45, 229–235 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Spinrad, J.P.: Efficient Graph Representations. Fields Institute monographs, vol. 19. American Mathematical Society (2003)

    Google Scholar 

  36. Tahoori, M.B.: A mapping algorithm for defect-tolerance of reconfigurable nano-architectures. In: IEEE/ACM International Conference on Computer-Aided Design, pp. 668–672 (2005)

    Google Scholar 

  37. Takaoka, A., Tayu, S., Ueno, S.: On unit grid intersection graphs. In: JCDCGG 2013, pp. 120–121 (2013)

    Google Scholar 

  38. Trotter, W.T.: Dimension of the crown \(S_{n}^{k}\). Discrete Math. 8, 85–103 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  39. Trotter, W.T.: Partially ordered sets. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 433–480. Elsevier Science B. V. (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chaplick, S., Hell, P., Otachi, Y., Saitoh, T., Uehara, R. (2014). Intersection Dimension of Bipartite Graphs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2014. Lecture Notes in Computer Science, vol 8402. Springer, Cham. https://doi.org/10.1007/978-3-319-06089-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06089-7_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06088-0

  • Online ISBN: 978-3-319-06089-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics