Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 589 Accesses

Abstract

Complex macromolecular architectures constitute an important field in contemporary polymer chemistry. Block copolymers belong to the most studied materials in this field and are subjected to manifold applications.

NOESY measurements were performed in collaboration with M. Hetzer and Prof. H. Ritter (Heinrich Heine Universität Düsseldorf). Parts of this chapter were reproduced with permission from Schmidt et al. [1]. Copyright 2013 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2013) UV Light and Temperature Responsive Supramolecular ABA Triblock Copolymers via Reversible Cyclodextrin Complexation. Macromolecules 46(3):1054–1065. doi:10.1021/ma302386w

    Google Scholar 

  2. Lodge TP (2003) Block copolymers: past successes and future challenges. Macromol Chem Phys 204:265–273

    Article  CAS  Google Scholar 

  3. Ruzette A-V, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19–31

    Article  CAS  Google Scholar 

  4. Ishizone T, Hirao A (2012) In synthesis of polymers: new structures and methods. In: Schlüter A D, Hawker CJ, Sakamoto J (eds) Chapter anionic polymerization: recent advances, Wiley-VCH, Weinheim, pp 81–134

    Google Scholar 

  5. Aoshima S, Kanaoka S (2009) A renaissance in living cationic polymerization. Chem Rev 109:5245–5287

    Article  CAS  Google Scholar 

  6. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  7. Ouchi M, Terashima T, Sawamoto M (2009) Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963–5050

    Article  CAS  Google Scholar 

  8. Matyjaszewski K (2012) Atom Transfer Radical Polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039

    Article  CAS  Google Scholar 

  9. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition/fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  10. Barner-Kowollik C (2008) Handbook of RAFT-polymerization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  11. Lutz JF (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025

    Article  CAS  Google Scholar 

  12. Barner-Kowollik C, Inglis AJ (2009) Has click chemistry lead to a paradigm shift in polymer material design? Macromol Chem Phys 210:987–992

    Article  CAS  Google Scholar 

  13. Kempe K, Krieg A, Becer CR, Schubert US (2012) “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem Soc Rev 41:176–191

    Article  CAS  Google Scholar 

  14. Opsteen JA, van Hest JCM (2005) Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem Commun 41:57–59

    Google Scholar 

  15. Hizal G, Tunca U, Sanyal AJ (2011) Discrete macromolecular constructs via the diels alder click reaction. Polym Sci Part A Polym Chem 49:4103–4120

    CAS  Google Scholar 

  16. Inglis AJ, Stenzel MH, Barner-Kowollik C (2009) Ultra-fast RAFT-HDA click conjugation: an efficient route to high molecular weight block copolymers. Macromol Rapid Commun 30:1792–1798

    Article  CAS  Google Scholar 

  17. Schmidt BVKJ, Fechler N, Falkenhagen J, Lutz JF (2011) Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat Chem 3:234–238

    Article  CAS  Google Scholar 

  18. Yan Q, Xin Y, Zhou R, Yin Y, Yuan J (2011) Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chem Commun 47:9594–9596

    Article  CAS  Google Scholar 

  19. Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270

    Article  CAS  Google Scholar 

  20. Stadermann J, Komber H, Erber M, Däbritz F, Ritter H, Voit B (2011) Diblock copolymer formation via self-assembly of cyclodextrin and adamantyl end-functionalized polymers. Macromolecules 44:3250–3259

    Article  CAS  Google Scholar 

  21. Zeng J, Shi K, Zhang Y, Sun X, Zhang B (2008) Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 44:3753–3755

    Google Scholar 

  22. Liu H, Zhang Y, Hu J, Li C, Liu S (2009) Multi-responsive supramolecular double hydrophilic diblock copolymer driven by host-guest inclusion complexation between beta-cyclodextrin and adamantyl moieties. Macromol Chem Phys 210:2125–2137

    Article  CAS  Google Scholar 

  23. Zhang Z-X, Liu X, Xu FJ, Loh XJ, Kang E-T, Neoh K-G, Li J (2008) Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing PEG: controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 41:5967–5970

    Article  CAS  Google Scholar 

  24. Zhang Z-X, Liu KL, Li J (2011) Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules 44:1182–1193

    Article  CAS  Google Scholar 

  25. Yhaya F, Binauld S, Callari M, Stenzel MH (2012) One-pot endgroup-modification of hydrophobic RAFT polymers with cyclodextrin by thiol-ene chemistry and the subsequent formation of dynamic core-shell nanoparticles using supramolecular host/guest chemistry. Aust J Chem 65:1095–1103

    Article  CAS  Google Scholar 

  26. Quan C-Y, Chen J-X, Wang H-Y, Li C, Chang C, Zhang X-Z, Zhuo R-X (2010) Core/shell nanosized assemblies mediated by the alpha/beta cyclodextrin dimer with a tumor-triggered targeting property. ACS Nano 4:4211–4219

    Article  CAS  Google Scholar 

  27. Rao J, Paunescu E, Mirmohades M, Gadwal I, Khaydarov A, Hawker CJ, Bang J, Khan A (2012) Supramolecular mimics of phase separating covalent diblock copolymers. Polym Chem 3:2050–2056

    Article  CAS  Google Scholar 

  28. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Delivery Rev 64:866–884

    Article  CAS  Google Scholar 

  29. Gan LH, Cai W, Tam KC (2001) Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur Polym J 37:1773–1778

    Article  CAS  Google Scholar 

  30. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1918

    Article  CAS  Google Scholar 

  31. Ross PD, Rekharsky MV (1996) Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys J 71:2144–2154

    Article  CAS  Google Scholar 

  32. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  CAS  Google Scholar 

  33. Takashima Y, Nakayama T, Miyauchi M, Kawaguchi Y, Yamaguchi H, Harada A (2004) Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chem Lett 33:890–891

    Article  CAS  Google Scholar 

  34. Tomatsu I, Hashidzume A, Harada A (2005) Photoresponsive hydrogel system using molecular recognition of alpha-cyclodextrin. Macromolecules 38:5223–5227

    Article  CAS  Google Scholar 

  35. Kwak RNY, Matyjaszewski K (2008) Dibromotrithiocarbonate iniferter for concurrent ATRP and RAFT polymerization. Effect of monomer, catalyst, and chain transfer agent structure on the polymerization mechanism. Macromolecules 41:4585–4596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Volkmar Konrad Jakob Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, B.V.K.J. (2014). Supramolecular ABA Triblock Copolymers. In: Novel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06077-4_4

Download citation

Publish with us

Policies and ethics