Skip to main content

Introduction

  • Chapter
  • First Online:
  • 571 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Polymeric materials play a significant role in contemporary society, e.g. as consumables, as high performance materials or in high-tech applications. The progress in these fields depends to a significant amount on the achievements of polymer science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hawker CJ, Wooley KL (2005) The convergence of synthetic organic and polymer chemistries. Science 209:1200–1205

    Google Scholar 

  2. Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F (eds) Complex macromolecular architectures: synthesis, characterization, and self-assembly. John Wiley & Sons (Asia) Pte Ltd, Singapore (2011)

    Google Scholar 

  3. Gregory A, Stenzel MH (2012) Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog Polym Sci 37:38–105

    Article  CAS  Google Scholar 

  4. Hedrick JL, Magbitang T, Connor EF, Glauser T, Volksen W, Hawker CJ, Lee VY, Miller RD (2002) Application of complex macromolecular architectures for advanced microelectronic materials. Chem Eur J 8:3308–3319

    Article  CAS  Google Scholar 

  5. Grayson SM, Godbey WT (2008) The role of macromolecular architecture in passively targeted polymeric carriers for drug and gene delivery. J Drug Target 16:329–356

    Article  CAS  Google Scholar 

  6. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  7. Neugebauer D, Zhang Y, Pakula T, Sheiko SS, Matyjaszewski K (2003) Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules 36:6746–6755

    Article  CAS  Google Scholar 

  8. Soler-Illia GJAA, Azzaroni O (2011) Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40:1107–1150

    Google Scholar 

  9. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerization. Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  10. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38:63–235

    Article  CAS  Google Scholar 

  11. Ouchi M, Terashima T, Sawamoto M (2009) Transition Metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963–5050

    Article  CAS  Google Scholar 

  12. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039

    Article  CAS  Google Scholar 

  13. Barner-Kowollik C (2008) Handbook of RAFT-polymerization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  14. Barner-Kowollik C, Perrier SJ (2008) The future of reversible addition fragmentation chain transfer polymerization. Polym Sci Part A Polym Chem 46:5715–5723

    Google Scholar 

  15. Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process— a third update. Aust J Chem 65:985–1076

    Article  CAS  Google Scholar 

  16. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Google Scholar 

  17. Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, Van Camp W (2011) “Clicking” polymers or just efficient linking: what is the difference? Angew Chem Int Ed 50:60–62

    Google Scholar 

  18. Kempe K, Krieg A, Becer CR, Schubert US (2012) “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem Soc Rev 41:176–191

    Article  CAS  Google Scholar 

  19. Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54

    Google Scholar 

  20. Lutz JF (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025

    Article  CAS  Google Scholar 

  21. Hoyle C, Bowman C (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Google Scholar 

  22. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1:17–36

    Article  CAS  Google Scholar 

  23. Tasdelen MA (2011) Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145

    Article  CAS  Google Scholar 

  24. Wilson AJ (2007) Non-covalent polymer assembly using arrays of hydrogen-bonds. Soft Matter 3:409–425

    Article  CAS  Google Scholar 

  25. Bertrand A, Lortie F, Bernard J (2012) Routes to hydrogen bonding chain-end functionalized polymers. Macromol Rapid Commun 33:2062–2091

    Article  CAS  Google Scholar 

  26. Kurth DG, Higuchi M (2006) Transition metal ions: weak links for strong polymers. Soft Matter 2:915–927

    Article  CAS  Google Scholar 

  27. Zayed JM, Nouvel N, Rauwald U, Scherman OA (2010) Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water. Chem Soc Rev 39:2806–2816

    Article  CAS  Google Scholar 

  28. Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266

    Article  CAS  Google Scholar 

  29. Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41:1621–1636

    Article  CAS  Google Scholar 

  30. van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175

    Article  Google Scholar 

  31. Yhaya F, Gregory AM, Stenzel MH (2010) Polymers with sugar buckets—the attachment of cyclodextrins onto polymer chains. Aust J Chem 63:195–210

    Article  CAS  Google Scholar 

  32. Zhou J, Ritter H (2010) Cyclodextrin functionalized polymers as drug delivery systems. Polym Chem 1:1552–1559

    Article  CAS  Google Scholar 

  33. Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875–882

    Article  CAS  Google Scholar 

  34. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host/guest polymers. Nat Commun 2:511

    Article  Google Scholar 

  35. Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101

    Article  CAS  Google Scholar 

  36. Chen Y, Liu Y (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev 39:495–505

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Volkmar Konrad Jakob Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, B.V.K.J. (2014). Introduction. In: Novel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06077-4_1

Download citation

Publish with us

Policies and ethics