Advertisement

Introduction

Chapter
  • 520 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Polymeric materials play a significant role in contemporary society, e.g. as consumables, as high performance materials or in high-tech applications. The progress in these fields depends to a significant amount on the achievements of polymer science.

Keywords

Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Star Polymer Supramolecular Interaction Raft Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hawker CJ, Wooley KL (2005) The convergence of synthetic organic and polymer chemistries. Science 209:1200–1205Google Scholar
  2. 2.
    Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F (eds) Complex macromolecular architectures: synthesis, characterization, and self-assembly. John Wiley & Sons (Asia) Pte Ltd, Singapore (2011)Google Scholar
  3. 3.
    Gregory A, Stenzel MH (2012) Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog Polym Sci 37:38–105CrossRefGoogle Scholar
  4. 4.
    Hedrick JL, Magbitang T, Connor EF, Glauser T, Volksen W, Hawker CJ, Lee VY, Miller RD (2002) Application of complex macromolecular architectures for advanced microelectronic materials. Chem Eur J 8:3308–3319CrossRefGoogle Scholar
  5. 5.
    Grayson SM, Godbey WT (2008) The role of macromolecular architecture in passively targeted polymeric carriers for drug and gene delivery. J Drug Target 16:329–356CrossRefGoogle Scholar
  6. 6.
    Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280CrossRefGoogle Scholar
  7. 7.
    Neugebauer D, Zhang Y, Pakula T, Sheiko SS, Matyjaszewski K (2003) Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules 36:6746–6755CrossRefGoogle Scholar
  8. 8.
    Soler-Illia GJAA, Azzaroni O (2011) Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40:1107–1150Google Scholar
  9. 9.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerization. Chem Rev 101:3661–3688CrossRefGoogle Scholar
  10. 10.
    Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38:63–235CrossRefGoogle Scholar
  11. 11.
    Ouchi M, Terashima T, Sawamoto M (2009) Transition Metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963–5050CrossRefGoogle Scholar
  12. 12.
    Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039CrossRefGoogle Scholar
  13. 13.
    Barner-Kowollik C (2008) Handbook of RAFT-polymerization. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  14. 14.
    Barner-Kowollik C, Perrier SJ (2008) The future of reversible addition fragmentation chain transfer polymerization. Polym Sci Part A Polym Chem 46:5715–5723Google Scholar
  15. 15.
    Moad G, Rizzardo E, Thang SH (2012) Living radical polymerization by the RAFT process— a third update. Aust J Chem 65:985–1076CrossRefGoogle Scholar
  16. 16.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021Google Scholar
  17. 17.
    Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, Van Camp W (2011) “Clicking” polymers or just efficient linking: what is the difference? Angew Chem Int Ed 50:60–62Google Scholar
  18. 18.
    Kempe K, Krieg A, Becer CR, Schubert US (2012) “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem Soc Rev 41:176–191CrossRefGoogle Scholar
  19. 19.
    Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54Google Scholar
  20. 20.
    Lutz JF (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025CrossRefGoogle Scholar
  21. 21.
    Hoyle C, Bowman C (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573Google Scholar
  22. 22.
    Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1:17–36CrossRefGoogle Scholar
  23. 23.
    Tasdelen MA (2011) Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145CrossRefGoogle Scholar
  24. 24.
    Wilson AJ (2007) Non-covalent polymer assembly using arrays of hydrogen-bonds. Soft Matter 3:409–425CrossRefGoogle Scholar
  25. 25.
    Bertrand A, Lortie F, Bernard J (2012) Routes to hydrogen bonding chain-end functionalized polymers. Macromol Rapid Commun 33:2062–2091CrossRefGoogle Scholar
  26. 26.
    Kurth DG, Higuchi M (2006) Transition metal ions: weak links for strong polymers. Soft Matter 2:915–927CrossRefGoogle Scholar
  27. 27.
    Zayed JM, Nouvel N, Rauwald U, Scherman OA (2010) Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water. Chem Soc Rev 39:2806–2816CrossRefGoogle Scholar
  28. 28.
    Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266CrossRefGoogle Scholar
  29. 29.
    Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41:1621–1636CrossRefGoogle Scholar
  30. 30.
    van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175CrossRefGoogle Scholar
  31. 31.
    Yhaya F, Gregory AM, Stenzel MH (2010) Polymers with sugar buckets—the attachment of cyclodextrins onto polymer chains. Aust J Chem 63:195–210CrossRefGoogle Scholar
  32. 32.
    Zhou J, Ritter H (2010) Cyclodextrin functionalized polymers as drug delivery systems. Polym Chem 1:1552–1559CrossRefGoogle Scholar
  33. 33.
    Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875–882CrossRefGoogle Scholar
  34. 34.
    Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host/guest polymers. Nat Commun 2:511CrossRefGoogle Scholar
  35. 35.
    Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101CrossRefGoogle Scholar
  36. 36.
    Chen Y, Liu Y (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev 39:495–505CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Materials Research LaboratoryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations