Skip to main content

Utility of Computational Structural Biology in Mass Spectrometry

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Recent developments of mass spectrometry (MS) allow us to identify, estimate, and characterize proteins and protein complexes. At the same time, structural biology helps to determine the protein structure and its structure–function relationship. Together, they aid to understand the protein structure, property, function, protein–complex assembly, protein–protein interaction and dynamics. The present chapter is organized with illustrative results to demonstrate how experimental mass spectrometry can be combined with computational structural biology for detailed studies of protein’s structures. We have used tumor differentiation factor protein/peptide as ligand and Hsp70/Hsp90 as receptor protein as examples to study ligand–protein interaction. To investigate possible protein conformation we will describe two proteins, lysozyme and myoglobin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Forster MJ (2002) Molecular modelling in structural biology. Micron 33(4):365–384

    Article  CAS  Google Scholar 

  2. Alber F, Eswar N, Sali A (2004) Structure determination of macromolecular complexes by experiment and computation. In: Bujnicki J (ed) Practical bioinformatics. Springer, Berlin, Heidelberg, pp 73–96

    Google Scholar 

  3. Judge PJ, Watts A (2011) Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Curr Opin Chem Biol 15(5):690–695

    Article  CAS  Google Scholar 

  4. Tang L, Johnson JE (2002) Structural biology of viruses by the combination of electron cryomicroscopy and X-ray crystallography†. Biochemistry 41(39):11517–11524

    Article  CAS  Google Scholar 

  5. Sanchez R, Sali A (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins suppl 1:50–58

    Google Scholar 

  6. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  7. Liu H-L, Hsu J-P (2005) Recent developments in structural proteomics for protein structure determination. Proteomics 5(8):2056–2068

    Article  CAS  Google Scholar 

  8. Simons KT, Strauss C, Baker D (2001) Prospects for ab initio protein structural genomics. J Mol Biol 306(5):1191–1199

    Article  CAS  Google Scholar 

  9. Bonneau R, Baker D (2001) Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct 30:173–189

    Article  CAS  Google Scholar 

  10. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  Google Scholar 

  11. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102(19):6679–6685

    Article  CAS  Google Scholar 

  12. Raval A et al (2012) Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins 80(8):2071–2079

    CAS  Google Scholar 

  13. Chen J, Brooks CL III (2007) Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins 67(4):922–930

    Article  CAS  Google Scholar 

  14. S̆ali A, Kuriyan J (1999) Challenges at the frontiers of structural biology. Trends Cell Biol 9(12):M20–M24

    Article  Google Scholar 

  15. Morin A, Sliz P (2013) Structural biology computing: lessons for the biomedical research sciences. Biopolymers 99(11):809–816

    Article  CAS  Google Scholar 

  16. Moult J et al (2011) Critical assessment of methods of protein structure prediction (CASP)—round IX. Proteins Struct Funct Bioinform 79(S10):1–5

    Article  CAS  Google Scholar 

  17. Wishart DS (2005) Bioinformatics in drug development and assessment. Drug Metab Rev 37(2):279–310

    Article  CAS  Google Scholar 

  18. Aebersold R et al (2012) The biology/disease-driven human proteome project (B/D-HPP): enabling protein research for the life sciences community. J Proteome Res 12(1):23–27

    Article  Google Scholar 

  19. Congreve M, Murray CW, Blundell TL (2005) Keynote review: structural biology and drug discovery. Drug Discov Today 10(13):895–907

    Article  CAS  Google Scholar 

  20. Ngounou Wetie AG et al (2013) Identification of post-translational modifications by mass spectrometry. Aust J Chem 66:734–748

    Article  Google Scholar 

  21. Ngounou Wetie AG et al (2014) Protein-protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 71(2):205–228

    Article  CAS  Google Scholar 

  22. Ngounou Wetie AG et al (2013) Automated mass spectrometry-based functional assay for the routine analysis of the secretome. J Lab Autom 18(1):19–29

    Article  CAS  Google Scholar 

  23. Sokolowska I et al (2012) Automatic determination of disulfide bridges in proteins. J Lab Autom 17(6):408–416

    CAS  Google Scholar 

  24. Sokolowska I et al (2013) Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cell Mol Life Sci 70(16):2835–2848

    Google Scholar 

  25. Sokolowska I et al (2012) Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. FEBS J 279(14):2579–2594

    Article  CAS  Google Scholar 

  26. Sokolowska I et al (2011) Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  27. Woods AG et al (2012) Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 16(6):1184–1195

    Article  CAS  Google Scholar 

  28. Woods AG et al (2011) Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  29. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299–2301

    Article  CAS  Google Scholar 

  30. Fenn JB et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  Google Scholar 

  31. Sokolowska I et al (2012) Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. J Biol Chem 287(3):1719–1733

    Article  CAS  Google Scholar 

  32. Dyachenko A et al (2013) Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc Natl Acad Sci U S A 110(18):7235–7239

    Article  CAS  Google Scholar 

  33. Sokolowska I et al (2013) Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cell Mol Life Sci 70(16):2835–2848

    Article  CAS  Google Scholar 

  34. Ngounou Wetie AG et al (2013) Investigation of stable and transient protein–protein interactions: past, present, and future. Proteomics 13(3–4):538–557

    Article  CAS  Google Scholar 

  35. Sokolowska I et al (2013) Applications of mass spectrometry in proteomics. Aust J Chem 66(7):721–733

    Article  CAS  Google Scholar 

  36. Darie CC (2013) Mass spectrometry and its applications in life sciences. Aust J Chem 66(7):719–720

    Article  CAS  Google Scholar 

  37. Florian PE et al (2013) Characterization of the anti-HBV activity of HLP1-23, a human lactoferrin-derived peptide. J Med Virol 85(5):780–788

    Article  CAS  Google Scholar 

  38. Petrareanu C et al (2013) Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte-and biliary-like cells. PLoS One 8(8):e71859

    Article  CAS  Google Scholar 

  39. Sokolowska I et al (2012) Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci 10(1):47

    Article  CAS  Google Scholar 

  40. Jurneczko E, Barran PE (2011) How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136(1):20–28

    Article  CAS  Google Scholar 

  41. Benesch JLP, Ruotolo BT (2011) Mass spectrometry: come of age for structural and dynamical biology. Curr Opin Struct Biol 21(5):641–649

    Article  CAS  Google Scholar 

  42. Walzthoeni T et al (2013) Mass spectrometry supported determination of protein complex structure. Curr Opin Struct Biol 23(2):252–260

    Article  CAS  Google Scholar 

  43. Wintrode P (2013) Mass spectrometry in structural biology. Biochim Biophys-Acta Proteins Proteomics 1834(6):1187

    Article  CAS  Google Scholar 

  44. Dunham WH, Mullin M, Gingras AC (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12(10):1576–1590

    Article  CAS  Google Scholar 

  45. Kaltashov IA, Bobst CE, Abzalimov RR (2009) H/D exchange and mass spectrometry in the studies of protein conformation and dynamics: is there a need for a top-down approach? Anal Chem 81(19):7892–7899

    Article  CAS  Google Scholar 

  46. Konijnenberg A, Butterer A, Sobott F (2013) Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta 1834(6):1239–1256

    Article  CAS  Google Scholar 

  47. Chalmers MJ et al (2011) Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev Proteomics 8(1):43–59

    Article  CAS  Google Scholar 

  48. Kan Z-Y et al (2013) Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc Natl Acad Sci 110(41):16438–16443

    Article  CAS  Google Scholar 

  49. Leitner A et al (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20(5):814–825

    Article  CAS  Google Scholar 

  50. Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci U S A 109(8):2884–2889

    Article  CAS  Google Scholar 

  51. Barrera NP et al (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6(8):585–587

    Article  CAS  Google Scholar 

  52. Schey KL, Grey AC, Nicklay JJ (2013) Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 52(22):3807–3817

    Article  CAS  Google Scholar 

  53. Laganowsky A et al (2013) Mass spectrometry of intact membrane protein complexes. Nat Protocols 8(4):639–651

    Article  CAS  Google Scholar 

  54. Roy U et al (2012) Structural investigation of tumor differentiation factor. Biotechnol Appl Biochem 59(6):445–450

    Article  CAS  Google Scholar 

  55. Roy U et al (2013) Tumor differentiation factor (TDF) and its receptor (TDF-R): is TDF-R an inducible complex with multiple docking sites? Mod Chem Appl 1(3):108

    Google Scholar 

  56. Roy U et al (2013) Structural evaluation and analyses of tumor differentiation factor. Protein J 32(7):512–518

    Article  CAS  Google Scholar 

  57. Woods AG et al (2013) Identification of tumor differentiation factor (TDF) in select CNS neurons. Brain Struct Funct DOI: 10.1007/s00429-013-0571-1

    Google Scholar 

  58. Cheetham JC, Artymiuk PJ, Phillips DC (1992) Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 A resolution. J Mol Biol 224(3):613–628

    Article  CAS  Google Scholar 

  59. Gordon JC et al (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371

    Article  CAS  Google Scholar 

  60. Myers J et al (2006) A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules. Proteins 63:928–938

    Article  CAS  Google Scholar 

  61. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulation. Nucleic Acids Res 40(W1):W537–W541

    Article  CAS  Google Scholar 

  62. Guex N, Peitsch MC (1996) Swiss-PdbViewer: a fast and easy-to-use PDB viewer for Macintosh and PC. Protein Data Bank Q Newslett 77:7

    Google Scholar 

  63. Mehler EL, Guarnieri F (1999) A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys J 75:3–22

    Article  Google Scholar 

  64. Kendrew JC et al (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610):662–666

    Article  CAS  Google Scholar 

  65. Yang F, Phillips GN Jr (1996) Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J Mol Biol 256(4):762–774

    Article  CAS  Google Scholar 

  66. Urayama P, Phillips GN Jr, Gruner SM (2002) Probing substates in sperm whale myoglobin using high-pressure crystallography. Structure 10(1):51–60

    Article  CAS  Google Scholar 

  67. Sage JT et al (1992) Low pH myoglobin photoproducts. Biophys J 61(4):1041–1044

    Article  CAS  Google Scholar 

  68. Duprat AF et al (1995) Myoglobin-NO at low pH: free four-coordinated heme in the protein pocket. Biochemistry 34(8):2634–2644

    Article  CAS  Google Scholar 

  69. Iben IE et al (1991) Carboxy Mb at pH 3. Time-resolved resonance Raman study at cryogenic temperatures. Biophys J 59(4):908–919

    Article  CAS  Google Scholar 

  70. Han S et al (1990) Metastable intermediates in myoglobin at low pH. Proc Natl Acad Sci U S A 87(1):205–209

    Article  CAS  Google Scholar 

  71. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp 40:1954

    Google Scholar 

  72. Sharon M (2013) Structural MS pulls its weight. Science 340(6136):1059–1060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Keep a Breast Foundation (KEABF-375-35054), the Redcay Foundation (SUNY Plattsburgh), the Alexander von Humboldt Foundation, SciFund Challenge, private donations (Ms. Mary Stewart Joyce & Mr. Kenneth Sandler), the David A. Walsh fellowship, and by the U.S. Army research office (DURIP grant #W911NF-11-1-0304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roy, U., Woods, A.G., Sokolowska, I., Darie, C.C. (2014). Utility of Computational Structural Biology in Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_6

Download citation

Publish with us

Policies and ethics