Skip to main content

Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

The diversity of biological samples and dynamic range of analytes being analyzed can prove to be an analytical challenge and is particularly prevalent to proteomic studies. Maximizing the peak capacity of the workflow employed can extend the dynamic range and increase identification rates. The focus of this chapter is to present means of achieving this for various analytical techniques such as liquid chromatography, mass spectrometry, and ion mobility. A combination of these methods can be used as part of a data-independent acquisition strategy, thereby limiting issues such as chimericy when analyzing regions of extreme analyte density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giddings JC (1984) Two-dimensional separations: concept and promise. Anal Chem 56:1258A–1260A, 1262A, 1264A

    Google Scholar 

  2. Swartz ME (2007) Separation science & technology, vol 8. Academic, pp 145–147

    Google Scholar 

  3. Van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci 5:271

    Article  Google Scholar 

  4. Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A (2004) Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:2331–2337

    Article  CAS  Google Scholar 

  5. Levy AL, Chung D (1953) Two-dimensional chromatography of amino acids on buffered papers. Anal Chem 25:396–399

    Article  CAS  Google Scholar 

  6. Honneger CG (1961) Dünnschicht-Ionophorese und Dünnschicht-Ionophorese-Chromatographie. Helv Chim Acta 44:173

    Article  Google Scholar 

  7. Rabilloud T (2002) Two-dimensional gel electrophopresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    Article  CAS  Google Scholar 

  8. Neue UD, Mazzeo JR (2001) A theoretical study of the optimization of gradients at elevated temperature. J Sep Sci 24:921–929

    Article  CAS  Google Scholar 

  9. Karger BL, Snyder LR, Horvarth C (1973) An introduction to separation science. Wiley, New York

    Google Scholar 

  10. Li X, Stoll DR, Carr PW (2009) Equation for peak capacity estimation in two-dimensional liquid chromatography. Anal Chem 81:845–850

    Article  CAS  Google Scholar 

  11. Dowell JA, Frost DC, Zhang J, Li L (2008) Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80:6715–6723

    Article  CAS  Google Scholar 

  12. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  Google Scholar 

  13. Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  Google Scholar 

  14. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  CAS  Google Scholar 

  15. Vollmer M, Horth P, Nagele E (2004) Optimization of two-dimensional off-line LC/MS separations to improve resolution of complex proteomic samples. Anal Chem 76:5180–5185

    Article  CAS  Google Scholar 

  16. Opiteck GJ, Jorgenson JW, Anderegg RJ (1997) Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides. Anal Chem 69:2283–2291

    Article  CAS  Google Scholar 

  17. Alvarez-Manilla G, James I, Guo Y, Warren NL, Orlando R, Pierce M (2006) Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res 5:701–708

    Article  CAS  Google Scholar 

  18. Preud’homme H, Far J, Gil-Casal S, Lobinski R (2012) Large-scale identification of selenium metabolites by online size-exclusion-reversed phase liquid chromatography with combined inductively coupled plasma (ICP-MS) and electrospray ionization linear trap-orbitrap mass spectrometry (ESI-MSn). Metallomics 4:422–432

    Article  Google Scholar 

  19. Barqawi H, Ostas E, Liu B, Carpenter JF, Binder WH (2012) Multidimensional characterization of α, ɷ-telechelic poly(Є-caprolactone)s via online coupling of 2D chromatographic methods (LC/SEC) and ESI-TOF/MALDI-TOF-MS. Macromolecules 45:9779–9790

    Article  CAS  Google Scholar 

  20. Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7:1389–1396

    Article  CAS  Google Scholar 

  21. Palma SD, Zoumaro-Djayoon A, Peng M, Post H, Preisinger C, Munoz J, Heck AJR (2013) Finding the same needles in the haystack? A comparison of phosphotyrosine peptides enriched by immuno-affinity precipitation and metal-based affinity chromatography. J Proteomics 91:331–337

    Article  Google Scholar 

  22. Frantzi M, Zoidakis J, Papadopulos T, Zürbig P, Katafigiotis J, Stravodimos K, Lazaris A, Giannopoulou I, Ploumidis A, Mischak H, Mullen W, Vlahou A (2013) IMAC fractionation in combination with LC-MS reveals H2B and NIF-1 peptides as potential bladder cancer biomarkers. J Proteome Res 12:3969–3979

    Article  CAS  Google Scholar 

  23. Liu S, Hughes C, Lajoie G (2012) Recent advances and special considerations for the analysis of phosphorylated peptides by LC-ESI-MS/MS. Curr Anal Chem 8:35–42

    Article  CAS  Google Scholar 

  24. Stasyk T, Huber LA (2012) Mapping in vivo signal transduction defects by phosphoproteomics. Trends Mol Med 18:43–51

    Article  CAS  Google Scholar 

  25. Boersema PJ, Divecha N, Heck AJR, Mohammed S (2007) Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res 6:937–946

    Article  CAS  Google Scholar 

  26. Xie F, Smith RD, Shen Y (2012) Advanced proteomic liquid chromatography. J Chromatogr A 1261:78–90

    Article  CAS  Google Scholar 

  27. Wang C, Yuan J, Wang Z, Huang L (2013) Separation of one-pot procedure released O-glycans as 1-phenyl-3-methyl-5-pyrazolone derivatives by hydrophilic interaction and reversed-phase liquid chromatography followed by identification using electrospray mass spectrometry and tandem mass spectrometry. J Chromatogr A 1274:107–117

    Article  CAS  Google Scholar 

  28. Lau E, Lam MPY, Siu SO, Kong RPW, Chan WL, Zhou Z, Huang J, Lo C, Chu IK (2011) Combinatorial use of offline SCX and online RP-RP liquid chromatography for iTRAQ-based quantitative proteomics applications. Mol Biosyst 7:1399–1408

    Article  CAS  Google Scholar 

  29. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77:6426–6434

    Article  CAS  Google Scholar 

  30. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703

    Article  CAS  Google Scholar 

  31. Francois I, Cabooter D, Sandra K, Lynen F, Desmet G, Sandra P (2009) Tryptic digest analysis by comprehensive reversed phasextwo reversed phase liquid chromatography (RP-LCx2RP-LC) at different pH’s. J Sep Sci 32:1137–1144

    Article  CAS  Google Scholar 

  32. Francois I, de Villiers A, Tienpont B, David F, Sandra P (2008) Comprehensive two-dimensional liquid chromatography applying two parallel columns in the second dimension. J Chromatogr A 1178:33–42

    Article  CAS  Google Scholar 

  33. Siu SO, Lam MPY, Lau E, Kong RPW, Lee SMY, Chu IK (2011) Fully automated two-dimensional reversed-phase capillary liquid chromatography with online tandem mass spectrometry for shotgun proteomics. Proteomics 11:2308–2319

    Article  CAS  Google Scholar 

  34. Zhou F, Cardoza JD, Ficarro SB, Adelment GO, Lazaro JB, Marto JA (2010) Online nanoflow RP-RP-MS reveals dynamics of multicomponent Ku complex in response to DNA damage. J Proteome Res 9:6242–6255

    Article  CAS  Google Scholar 

  35. Scigelova M, Hornshaw M, Giannokulas A, Makarov A (2011) Fourier transform mass spectrometry. MCP 1–19. doi:10.1074/mcp.M111.009431

  36. Morris HR, Paxton T, Dell A, Langhorn B, Berg M, Bordoli RS, Hoyes J, Bateman RH (1996) High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 10:889–896

    Article  CAS  Google Scholar 

  37. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12

    Article  CAS  Google Scholar 

  38. Mason EA, McDaniel EW (1973) The mobility and diffusion of ions in gases. Wiley, New York

    Google Scholar 

  39. Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH, Robinson CV (2005) Evidence for macromolecular protein rings in the absence of bulk water. Science 310:1658

    Article  CAS  Google Scholar 

  40. Harvey SR, Macphee CE, Barran PE (2011) Ion mobility mass spectrometry for peptide analysis. Methods 54:454–461

    Article  CAS  Google Scholar 

  41. Giles K, Pringle SD, Worhtington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18:2401–2414

    Article  CAS  Google Scholar 

  42. Dugourd P, Hudgins RR, Clemmer DE, Jarrold MF (1997) High-resolution ion mobility measurements. Rev Sci Instrum 68:1122–1129

    Article  CAS  Google Scholar 

  43. Shvartsburg AA, Smith RD (2008) Fundamentals of travelling wave ion mobility spectrometry. Anal Chem 80:9689–9699

    Article  CAS  Google Scholar 

  44. Houel S, Abernathy R, Renganathan K, Meyer-Arendt K, Ahn NG, Old WM (2010) Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale proteomics studies. J Proteome Res 9:4152–4160

    Article  CAS  Google Scholar 

  45. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10:1785–1793

    Article  CAS  Google Scholar 

  46. Rodriguez-Suarez E, Hughes C, Gethings L, Giles K, Wildgoose J, Stapels M, Fadgen KE, Geromanos SJ, Vissers JPC, Elortza F, Langridge JI (2012) An ion mobility assisted data independent LC-MS strategy for the analysis of complex biological samples. Curr Anal Chem 9:199–211

    Google Scholar 

  47. Geromanos SJ, Hughes C, Golick D, Ciavarini S, Gorenstein MV, Richardson K, Hoyes JB, Vissers JP, Langridge JI (2011) Simulating and validating proteomics data and search results. Proteomics 11:1189–1211

    Article  CAS  Google Scholar 

  48. Thalassinos K, Vissers JP, Tenzer S, Levin Y, Thompson JW, Daniel D, Mann D, Delong MR, Moseley MA, America AH, Ottens AK, Cavey GS, Efstathiou G, Scrivens JH, Langridge JI, Germoanos SJ (2012) Design and application of a data-independent precursor and product ion repository. J Am Soc Mass Spectrom 23:1808–1820

    Article  CAS  Google Scholar 

  49. Geromanos SJ, Vissers JPC, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependent LC-MS/MS. Proteomics 9:1683–1695

    Article  CAS  Google Scholar 

  50. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77:2187–2200

    Article  CAS  Google Scholar 

  51. Li GZ, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719

    Article  CAS  Google Scholar 

  52. Kohl M, Megger DA, Trippler M, Meckel H, Ahrens M, Bracht T, Weber F, Hoffmann AC, Baba HA, Sitek B, Schlaak JF, Meyer HE, Stephan C, Eisenacher M (2014) A practical data processing workflow for multi-OMICS projects. Biochem Biophys Acta 1844:52–62

    CAS  Google Scholar 

  53. Chesney RW (1999) The idiopathic nephrotic syndrome. Curr Opin Pediatr 11:158–161

    Article  CAS  Google Scholar 

  54. Vaezzadeh AR, Briscoe AC, Steen H, Lee RS (2010) One-step sample concentration, purification, and albumin depletion method for urinary proteomics. J Proteome Res 9:6082–6089

    Article  CAS  Google Scholar 

  55. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK (2010) Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5:1005–1018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our collaborators who have provided figures and granted permission to use their collateral. In particular we would like to acknowledge Dr. Stefan Tenzer, Dr. Eva Rodriguez-Suárez, Dr. Sandra Kraljević Pavelić, Dr. Martin Gilar, Dr. John Shockcor, Kenneth Fountain, and Eric Grumbach. Finally Dr. Johannes P.C. Vissers is thanked for constructive comments during review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee A. Gethings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gethings, L.A., Connolly, J.B. (2014). Simplifying the Proteome: Analytical Strategies for Improving Peak Capacity. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_3

Download citation

Publish with us

Policies and ethics