Skip to main content

Application of Mass Spectrometry to Characterize Localization and Efficacy of Nanoceria In Vivo

  • Chapter
  • First Online:
Book cover Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

In vivo study of nanomaterials is complicated by the physical and chemical changes induced in the nanomaterial by exposure to biological compartments. A diverse array of proteins can bind to the nanomaterial, forming a protein corona which may alter the dispersion, surface charge, distribution, and biological activity of the material. Evidence suggests that unique synthesis and stabilization strategies can greatly affect the composition of the corona, and thus, the in vivo properties of the nanomaterial. Protein and elemental analyses techniques are critical to characterizing the nature of the protein corona in order to best predict the in vivo behavior of the nanomaterial. Further, as described here, inductively coupled mass spectroscopy (ICP-MS) can also be used to quantify nanomaterial deposition in tissues harvested from exposed animals. Elemental analysis of ceria content demonstrated deposition of cerium oxide nanoparticles (CeNPs) in various tissues of healthy mice and in the brains of mice with a model of multiple sclerosis. Thus, ICP-MS analysis of nanomaterial tissue distribution can complement data illustrating the biological, and in this case, therapeutic efficacy of nanoparticles delivered in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Analytical centrifugation

AUC:

Area under the curve

BBB:

Blood–brain barrier

CA/EDTA:

Citric acid/EDTA

CeNPs:

Cerium oxide nanoparticles

DLS:

Dynamic light scattering

EAE:

Experimental autoimmune encephalomyelitis

ICP-MS:

Inductively coupled mass spectrometry

LC-MS/MS:

Liquid chromatography-mass spectrometry

MS:

Multiple sclerosis

PEGylation:

Polyethylene glycol addition

ROS:

Reactive oxygen species

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

SEC:

Size exclusion chromatography

References

  1. Pardridge W (2003) Blood–brain barrier drug targeting: the future of brain drug development. Mol Interv 3:90–105

    Article  CAS  Google Scholar 

  2. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569

    Article  CAS  Google Scholar 

  3. Hekmatara T, Bernreuther C, Khalansky AS, Theisen A, Weissenberger J, Matschke J, Gelperina S, Kreuter J, Glatzel M (2009) Efficient systemic therapy of rat glioblastoma by nanoparticle-bound doxorubicin is due to antiangiogenic effects. Clin Neuropathol 28:153–164

    Article  CAS  Google Scholar 

  4. Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    Article  CAS  Google Scholar 

  5. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328

    Article  CAS  Google Scholar 

  6. Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71:251–256

    Article  CAS  Google Scholar 

  7. Friese A, Seiller E, Quack G, Lorenz B, Kreuter J (2000) Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 49:103–109

    Article  CAS  Google Scholar 

  8. Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67–74

    Article  CAS  Google Scholar 

  9. Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310:213–219

    Article  CAS  Google Scholar 

  10. Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B (2008) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70:75–84

    Article  CAS  Google Scholar 

  11. Lai KK, Kolippakkam D, Beretta L (2008) Comprehensive and quantitative proteome profiling of the mouse liver and plasma. Hepatology 47:1043–1051

    Article  CAS  Google Scholar 

  12. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  CAS  Google Scholar 

  13. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl 46:5754–5756

    Article  CAS  Google Scholar 

  14. Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Control Release 161:429–445

    Article  CAS  Google Scholar 

  15. Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML (2013) Protein corona significantly reduces active targeting yield. Chem Commun (Camb) 49:2557–2559

    Article  CAS  Google Scholar 

  16. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Article  CAS  Google Scholar 

  17. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. NanoToday 3:40–47

    Article  CAS  Google Scholar 

  18. Sahoo B, Goswami M, Nag S, Maiti S (2007) Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers. Chem Phys Lett 445:217–220

    Article  CAS  Google Scholar 

  19. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100:303–315

    Article  CAS  Google Scholar 

  20. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    Article  CAS  Google Scholar 

  21. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495

    Article  CAS  Google Scholar 

  22. Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A 104:8691–8696

    Article  CAS  Google Scholar 

  23. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  Google Scholar 

  24. Dell’Orco D, Lundqvist M, Oslakovic C, Cedervall T, Linse S (2010) Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One 5:e10949

    Article  Google Scholar 

  25. Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55:156–159

    CAS  Google Scholar 

  26. Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, Linse S, Cedervall T (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276:3372–3381

    Article  CAS  Google Scholar 

  27. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  Google Scholar 

  28. Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8:343–357

    Article  CAS  Google Scholar 

  29. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270

    Article  CAS  Google Scholar 

  30. Sheng Y, Liu C, Yuan Y, Tao X, Yang F, Shan X, Zhou H, Xu F (2009) Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 30:2340–2348

    Article  CAS  Google Scholar 

  31. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49:6288–6308

    Article  CAS  Google Scholar 

  32. Kim YK, Minai-Tehrani A, Lee JH, Cho CS, Cho MH, Jiang HL (2013) Therapeutic efficiency of folated poly(ethylene glycol)-chitosan-graft-polyethylenimine-Pdcd4 complexes in H-ras12V mice with liver cancer. Int J Nanomedicine 8:1489–1498

    Google Scholar 

  33. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509

    Article  CAS  Google Scholar 

  34. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147

    Article  CAS  Google Scholar 

  35. Hatakeyama H, Akita H, Harashima H (2013) The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 36:892–899

    Article  CAS  Google Scholar 

  36. Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H (2007) PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release 122:349–355

    Article  CAS  Google Scholar 

  37. Heckman KL, Decoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C, Mullen P, Rathbun E, Prime K, Marini J, Patchefsky J, Patchefsky AS, Hailstone RK, Erlichman JS (2013) Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 7:10582–10596

    Article  CAS  Google Scholar 

  38. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055

    Article  CAS  Google Scholar 

  39. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  CAS  Google Scholar 

  40. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  41. Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, Laganà A (2010) Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer. Anal Bioanal Chem 398:2895–2903

    Article  CAS  Google Scholar 

  42. Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ (2014) Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu Rev Pharmacol Toxicol 54:581–598

    Article  CAS  Google Scholar 

  43. Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 6:815–835

    Article  CAS  Google Scholar 

  44. Nam J, Won N, Bang J, Jin H, Park J, Jung S, Park Y, Kim S (2013) Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev 65:622–648

    Article  CAS  Google Scholar 

  45. Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, Katta A, Addagarla HS, Rice KM, Blough ER (2011) Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague–Dawley rats. Int J Nanomedicine 6:2327–2335

    Article  CAS  Google Scholar 

  46. Tseng MT, Lu X, Duan X, Hardas SS, Sultana R, Wu P, Unrine JM, Graham U, Butterfield DA, Grulke EA, Yokel RA (2012) Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol Appl Pharmacol 260:173–182

    Article  CAS  Google Scholar 

  47. Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, Reilly CM (2013) Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol 28:107–118

    Article  CAS  Google Scholar 

  48. Yokel RA, Au TC, MacPhail R, Hardas SS, Butterfield DA, Sultana R, Goodman M, Tseng MT, Dan M, Haghnazar H, Unrine JM, Graham UM, Wu P, Grulke EA (2012) Distribution, elimination, and biopersistence to 90 days of a systemically introduced 30 nm ceria-engineered nanomaterial in rats. Toxicol Sci 127:256–268

    Article  CAS  Google Scholar 

  49. Yokel RA, Florence RL, Unrine JM, Tseng MT, Graham UM, Wu P, Grulke EA, Sultana R, Hardas SS, Butterfield DA (2009) Biodistribution and oxidative stress effects of a systemically-introduced commercial ceria engineered nanomaterial. Nanotoxicology 3:234–248

    Article  CAS  Google Scholar 

  50. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Article  CAS  Google Scholar 

  51. Uskoković V (2013) Entering the era of nanoscience: time to be so small. J Biomed Nanotechnol 9:1441–1470

    Article  Google Scholar 

  52. Hardas SS, Butterfield DA, Sultana R, Tseng MT, Dan M, Florence RL, Unrine JM, Graham UM, Wu P, Grulke EA, Yokel RA (2010) Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria. Toxicol Sci 116:562–576

    Article  CAS  Google Scholar 

  53. Hardas SS, Sultana R, Warrier G, Dan M, Florence RL, Wu P, Grulke EA, Tseng MT, Unrine JM, Graham UM, Yokel RA, Butterfield DA (2012) Rat brain pro-oxidant effects of peripherally administered 5 nm ceria 30 days after exposure. Neurotoxicology 33:1147–1155

    Article  CAS  Google Scholar 

  54. Campbell CT, Peden CH (2005) Chemistry. Oxygen vacancies and catalysis on ceria surfaces. Science 309:713–714

    Article  CAS  Google Scholar 

  55. Schalow T, Laurin M, Brandt B, Schauermann S, Guimond S, Kuhlenbeck H, Starr DE, Shaikhutdinov SK, Libuda J, Freund HJ (2005) Oxygen storage at the metal/oxide interface of catalyst nanoparticles. Angew Chem Int Ed Engl 44:7601–7605

    Article  CAS  Google Scholar 

  56. Sayle TX, Molinari M, Das S, Bhatta UM, Möbus G, Parker SC, Seal S, Sayle DC (2013) Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles. Nanoscale 5:6063–6073

    Article  CAS  Google Scholar 

  57. Andreescu S, Ornatska M, Erlichman JE, Estevez A, Leiter JC (2012) Biomedical applications of metal oxide nanoparticles. In: Matijevic E (ed) Fine particles in medicine and pharmacy. Springer, New York, pp 57–100

    Chapter  Google Scholar 

  58. Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, Ludington JS, Chatani P, Mosenthal WP, Leiter JC, Andreescu S, Erlichman JS (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51:1155–1163

    Article  CAS  Google Scholar 

  59. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  CAS  Google Scholar 

  60. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  CAS  Google Scholar 

  61. Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 5:225–231

    Article  CAS  Google Scholar 

  62. Estevez AY, Erlichman JS (2011) Cerium oxide nanoparticles for the treatment of neurological oxidative stress diseases. In: Andreescu S (ed) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC, pp 255–288

    Google Scholar 

  63. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  Google Scholar 

  64. Kancheva VD, Kasaikina OT (2013) Bio-antioxidants—a chemical base of their antioxidant activity and beneficial effect on human health. Curr Med Chem 20:4784–4805

    Article  CAS  Google Scholar 

  65. Ganesana M, Erlichman JS, Andreescu S (2012) Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor. Free Radic Biol Med 53:2240–2249

    Article  CAS  Google Scholar 

  66. Hemmer B, Nessler S, Zhou D, Kieseier B, Hartung HP (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211

    Article  CAS  Google Scholar 

  67. Raivich G, Banati R (2004) Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 46:261–281

    Article  CAS  Google Scholar 

  68. Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK (2010) Animal models of multiple sclerosis–potentials and limitations. Prog Neurobiol 92:386–404

    Article  Google Scholar 

  69. Ngounou Wetie AG, Sokolowska I, Woods AG, Wormwood KL, Dao S, Patel S, Clarkson BD, Darie CC (2013) Automated mass spectrometry-based functional assay for the routine analysis of the secretome. J Lab Autom 18:19–29

    Article  CAS  Google Scholar 

  70. Ngounou Wetie AG, Sokolowska I, Woods AG, Darie CC (2013) Identification of post-translational modifications by mass spectrometry. Aust J Chem 66:734–748

    Article  Google Scholar 

  71. Petrareanu C, Macovei A, Sokolowska I, Woods AG, Lazar C, Radu GL, Darie CC, Branza-Nichita N (2013) Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte-and biliary-like cells. PLoS One 8:e71859

    Article  CAS  Google Scholar 

  72. Sokolowska I, Ngounou Wetie AG, Woods AG, Darie CC (2013) Applications of mass spectrometry in proteomics. Aust J Chem 66:721–733

    Article  CAS  Google Scholar 

  73. Sokolowska I, Ngounou Wetie AG, Roy U, Woods AG, Darie CC (2013) Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochim Biophys Acta 1834:1474–1483

    Article  CAS  Google Scholar 

  74. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  CAS  Google Scholar 

  75. Ledeboer A, Wierinckx A, Bol JG, Floris S, Renardel de Lavalette C, De Vries HE, van den Berg TK, Dijkstra CD, Tilders FJ, van dam AM (2003) Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE. J Neuroimmunol 136:94–103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Armand G. Ngounou Wetie and Dr. Costel C. Darie (Biochemistry & Proteomics Group, Clarkson University) for the mass spectrometry work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin L. Heckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heckman, K.L., Erlichman, J., Reed, K., Skeels, M. (2014). Application of Mass Spectrometry to Characterize Localization and Efficacy of Nanoceria In Vivo. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_28

Download citation

Publish with us

Policies and ethics