Skip to main content

Using Proteomics to Unravel the Mysterious Steps of the HBV-Life-Cycle

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Abstract

Infection with Hepatitis B virus (HBV) is the most common cause of liver disease in the world. Infection becomes chronic in up to 10 % of adults, with severe consequences on liver function, including inflammation, fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). HCC is a fast progressing disease causing the death of approximately one million patients annually; current treatment has very limited success, mainly due to late-stage diagnosis and poor screening methodologies. Therefore, unraveling the complex HBV-host cell interactions during progression of the disease is of crucial importance, not only to understand the mechanisms underlying carcinogenesis, but importantly, for the development of new biomarkers for prognostic and early diagnosis. This is an area of research strongly influenced by proteomic studies, which have benefited in the last decade from major technical improvements in accuracy of quantification and sensitivity, large-scale analysis of low-abundant proteins, such as those from clinical samples being now possible and widely applied. This work is a critical review of the impact of the proteomic studies on our current understanding of HBV-associated pathogenesis, diagnostics, and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CID:

Collision-induced dissociation

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

m/z :

Mass/charge

MS:

Mass spectrometry

nanoLC-MS/MS:

Nanoliquid chromatography tandem mass spectrometry

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TIC:

Total ion current

References

  1. Beck J, Nassal M (2007) Hepatitis B virus replication. World J Gastroenterol 13:48–64

    Article  CAS  Google Scholar 

  2. Lee WM (1997) Hepatitis B virus infection. N Engl J Med 337:1733–1745

    Article  CAS  Google Scholar 

  3. Yoffe B, Noonan CA, Melnick JL, Hollinger FB (1986) Hepatitis B virus DNA in mononuclear cells and analysis of cell subsets for the presence of replicative intermediates of viral DNA. J Infect Dis 153:471–477

    Article  CAS  Google Scholar 

  4. Kock J, Theilmann L, Galle P, Schlicht HJ (1996) Hepatitis B virus nucleic acids associated with human peripheral blood mononuclear cells do not originate from replicating virus. Hepatology 23:405–413

    Article  CAS  Google Scholar 

  5. Stoll-Becker S, Repp R, Glebe D, Schaefer S, Kreuder J, Kann M, Lampert F, Gerlich WH (1997) Transcription of hepatitis B virus in peripheral blood mononuclear cells from persistently infected patients. J Virol 71:5399–5407

    CAS  Google Scholar 

  6. Hoofnagle JH (1992) Molecular biology of the hepatitis B virus. In: McLachlan A. CRC Press, Boca Raton, 1991, p 330. $179.95. Hepatology 15: 976–977

    Google Scholar 

  7. Bouchard MJ, Schneider RJ (2004) The enigmatic X gene of hepatitis B virus. J Virol 78:12725–12734

    Article  CAS  Google Scholar 

  8. Twu JS, Schloemer RH (1987) Transcriptional trans-activating function of hepatitis B virus. J Virol 61:3448–3453

    CAS  Google Scholar 

  9. Benn J, Schneider RJ (1994) Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A 91:10350–10354

    Article  CAS  Google Scholar 

  10. Bouchard MJ, Wang LH, Schneider RJ (2001) Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 294:2376–2378

    Article  CAS  Google Scholar 

  11. Becker SA, Lee TH, Butel JS, Slagle BL (1998) Hepatitis B virus X protein interferes with cellular DNA repair. J Virol 72:266–272

    CAS  Google Scholar 

  12. Chang C, Enders G, Sprengel R, Peters N, Varmus HE, Ganem D (1987) Expression of the precore region of an avian hepatitis B virus is not required for viral replication. J Virol 61:3322–3325

    CAS  Google Scholar 

  13. Milich DR, Jones JE, Hughes JL, Price J, Raney AK, McLachlan A (1990) Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A 87:6599–6603

    Article  CAS  Google Scholar 

  14. Patient R, Hourioux C, Roingeard P (2009) Morphogenesis of hepatitis B virus and its subviral envelope particles. Cell Microbiol 11:1561–1570

    Article  CAS  Google Scholar 

  15. Papatheodoridis GV, Manolakopoulos S, Dusheiko G, Archimandritis AJ (2008) Therapeutic strategies in the management of patients with chronic hepatitis B virus infection. Lancet Infect Dis 8:167–178

    Article  CAS  Google Scholar 

  16. Aloman C, Wands JR (2003) Resistance of HBV to adefovir dipivoxil: a case for combination antiviral therapy? Hepatology 38:1584–1587

    Article  CAS  Google Scholar 

  17. Delaney WE, Locarnini S, Shaw T (2001) Resistance of hepatitis B virus to antiviral drugs: current aspects and directions for future investigation. Antivir Chem Chemother 12:1–35

    CAS  Google Scholar 

  18. Cardell K, Akerlind B, Sallberg M, Fryden A (2008) Excellent response rate to a double dose of the combined hepatitis A and B vaccine in previous nonresponders to hepatitis B vaccine. J Infect Dis 198:299–304

    Article  Google Scholar 

  19. Ladner SK, Otto MJ, Barker CS, Zaifert K, Wang GH, Guo JT, Seeger C, King RW (1997) Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob Agents Chemother 41:1715–1720

    CAS  Google Scholar 

  20. Sells MA, Chen ML, Acs G (1987) Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A 84:1005–1009

    Article  CAS  Google Scholar 

  21. Acs G, Sells MA, Purcell RH, Price P, Engle R, Shapiro M, Popper H (1987) Hepatitis B virus produced by transfected Hep G2 cells causes hepatitis in chimpanzees. Proc Natl Acad Sci U S A 84:4641–4644

    Article  CAS  Google Scholar 

  22. Tong A, Wu L, Lin Q, Lau QC, Zhao X, Li J, Chen P, Chen L, Tang H, Huang C, Wei YQ (2008) Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics 8:2012–2023

    Article  CAS  Google Scholar 

  23. Cui F, Wang Y, Wang J, Wei K, Hu J, Liu F, Wang H, Zhao X, Zhang X, Yang X (2006) The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice. Proteomics 6:498–504

    Article  CAS  Google Scholar 

  24. Zhang Z, Protzer U, Hu Z, Jacob J, Liang TJ (2004) Inhibition of cellular proteasome activities enhances hepadnavirus replication in an HBX-dependent manner. J Virol 78:4566–4572

    Article  CAS  Google Scholar 

  25. Lazar C, Macovei A, Petrescu S, Branza-Nichita N (2012) Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production. PLoS One 7:e34169

    Article  CAS  Google Scholar 

  26. Rogers J (1989) Calcium-binding proteins: the search for functions. Nature 339:661–662

    Article  CAS  Google Scholar 

  27. Choi Y, Gyoo Park S, Yoo JH, Jung G (2005) Calcium ions affect the hepatitis B virus core assembly. Virology 332:454–463

    Article  CAS  Google Scholar 

  28. Napoli JL (1999) Retinoic acid: its biosynthesis and metabolism. Prog Nucleic Acid Res Mol Biol 63:139–188

    Article  CAS  Google Scholar 

  29. Balmer JE, Blomhoff R (2002) Gene expression regulation by retinoic acid. J Lipid Res 43:1773–1808

    Article  CAS  Google Scholar 

  30. Huan B, Siddiqui A (1992) Retinoid X receptor RXR alpha binds to and trans-activates the hepatitis B virus enhancer. Proc Natl Acad Sci U S A 89:9059–9063

    Article  CAS  Google Scholar 

  31. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME (1999) Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J 18:4633–4644

    Article  CAS  Google Scholar 

  32. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825

    Article  CAS  Google Scholar 

  33. Diamond DL, Jacobs JM, Paeper B, Proll SC, Gritsenko MA, Carithers RL Jr, Larson AM, Yeh MM, Camp DG 2nd, Smith RD, Katze MG (2007) Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology 46:649–657

    Article  CAS  Google Scholar 

  34. Mawson AR, Steele TA (2001) Possible role of retinoids in hepatitis B virus-associated liver damage. Exp Biol Med 226:734–739

    CAS  Google Scholar 

  35. Melia TJ Jr (2007) Putting the clamps on membrane fusion: how complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 581:2131–2139

    Article  CAS  Google Scholar 

  36. Falkowski MA, Thomas DD, Groblewski GE (2010) Complexin 2 modulates vesicle-associated membrane protein (VAMP) 2-regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem 285:35558–35566

    Article  CAS  Google Scholar 

  37. Liu K, Qian L, Wang J, Li W, Deng X, Chen X, Sun W, Wei H, Qian X, Jiang Y, He F (2009) Two-dimensional blue native/SDS-PAGE analysis reveals heat shock protein chaperone machinery involved in hepatitis B virus production in HepG2.2.15 cells. Mol Cell Proteomics 8:495–505

    Article  CAS  Google Scholar 

  38. Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, Schamel WW (2004) Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol Cell Proteomics 3:176–182

    Article  CAS  Google Scholar 

  39. Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1:418–428

    Article  CAS  Google Scholar 

  40. Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414

    CAS  Google Scholar 

  41. Jindal S, Young RA (1992) Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J Virol 66:5357–5362

    CAS  Google Scholar 

  42. Nakagawa S, Umehara T, Matsuda C, Kuge S, Sudoh M, Kohara M (2007) Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem Biophys Res Commun 353:882–888

    Article  CAS  Google Scholar 

  43. Park SG, Jung G (2001) Human hepatitis B virus polymerase interacts with the molecular chaperonin Hsp60. J Virol 75:6962–6968

    Article  CAS  Google Scholar 

  44. Hu J, Toft DO, Seeger C (1997) Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 16:59–68

    Article  Google Scholar 

  45. Sydor JR, Normant E, Pien CS, Porter JR, Ge J, Grenier L, Pak RH, Ali JA, Dembski MS, Hudak J, Patterson J, Penders C, Pink M, Read MA, Sang J, Woodward C, Zhang Y, Grayzel DS, Wright J, Barrett JA, Palombella VJ, Adams J, Tong JK (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci U S A 103:17408–17413

    Article  CAS  Google Scholar 

  46. Bremer CM, Bung C, Kott N, Hardt M, Glebe D (2009) Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cell Microbiol 11:249–260

    Article  CAS  Google Scholar 

  47. Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek RA, Zitzmann N, Nichita NB (2010) Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol 84:243–253

    Article  CAS  Google Scholar 

  48. Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    Article  CAS  Google Scholar 

  49. Balasubramanian N, Scott DW, Castle JD, Casanova JE, Schwartz MA (2007) Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 9:1381–1391

    Article  CAS  Google Scholar 

  50. Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–254

    Article  CAS  Google Scholar 

  51. Xie N, Huang K, Zhang T, Lei Y, Liu R, Wang K, Zhou S, Li J, Wu J, Wu H, Deng C, Zhao X, Nice EC, Huang C (2012) Comprehensive proteomic analysis of host cell lipid rafts modified by HBV infection. J Proteomics 75:725–739

    Article  CAS  Google Scholar 

  52. Ma Y, Yu J, Chan HL, Chen YC, Wang H, Chen Y, Chan CY, Go MY, Tsai SN, Ngai SM, To KF, Tong JH, He QY, Sung JJ, Kung HF, Cheng CH, He ML (2009) Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus. Mol Cell Proteomics 8:2582–2594

    Article  CAS  Google Scholar 

  53. Chua PK, Wang RY, Lin MH, Masuda T, Suk FM, Shih C (2005) Reduced secretion of virions and hepatitis B virus (HBV) surface antigen of a naturally occurring HBV variant correlates with the accumulation of the small S envelope protein in the endoplasmic reticulum and Golgi apparatus. J Virol 79:13483–13496

    Article  CAS  Google Scholar 

  54. Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ, Mao C, Ye R, Wang M, Pen L, Dubeau L, Groshen S, Hofman FM, Lee AS (2008) Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68:498–505

    Article  CAS  Google Scholar 

  55. Parkin DM, Bray F, Ferlay J, Pisani P (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94:153–156

    Article  CAS  Google Scholar 

  56. Tan TL, Chen WN (2005) A proteomics analysis of cellular proteins associated with HBV genotype-specific HBX: potential in identification of early diagnostic markers for HCC. J Clin Virol 33:293–298

    Article  CAS  Google Scholar 

  57. Tan TL, Feng Z, Lu YW, Chan V, Chen WN (2006) Adhesion contact kinetics of HepG2 cells during Hepatitis B virus replication: involvement of SH3-binding motif in HBX. Biochim Biophys Acta 1762:755–766

    Article  CAS  Google Scholar 

  58. Macdonald A, Crowder K, Street A, McCormick C, Saksela K, Harris M (2003) The hepatitis C virus non-structural NS5A protein inhibits activating protein-1 function by perturbing ras-ERK pathway signaling. J Biol Chem 278:17775–17784

    Article  CAS  Google Scholar 

  59. Tong A, Gou L, Lau QC, Chen B, Zhao X, Li J, Tang H, Chen L, Tang M, Huang C, Wei YQ (2009) Proteomic profiling identifies aberrant epigenetic modifications induced by hepatitis B virus X protein. J Proteome Res 8:1037–1046

    Article  CAS  Google Scholar 

  60. Shim YH, Yoon GS, Choi HJ, Chung YH, Yu E (2003) p16 Hypermethylation in the early stage of hepatitis B virus-associated hepatocarcinogenesis. Cancer Lett 190:213–219

    Article  CAS  Google Scholar 

  61. Zhong S, Tang MW, Yeo W, Liu C, Lo YM, Johnson PJ (2002) Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res 8:1087–1092

    CAS  Google Scholar 

  62. Jung JK, Arora P, Pagano JS, Jang KL (2007) Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res 67:5771–5778

    Article  CAS  Google Scholar 

  63. Niu D, Sui J, Zhang J, Feng H, Chen WN (2009) iTRAQ-coupled 2-D LC-MS/MS analysis of protein profile associated with HBV-modulated DNA methylation. Proteomics 9:3856–3868

    Article  CAS  Google Scholar 

  64. Mohammad HS, Kurokohchi K, Yoneyama H, Tokuda M, Morishita A, Jian G, Shi L, Murota M, Tani J, Kato K, Miyoshi H, Deguchi A, Himoto T, Usuki H, Wakabayashi H, Izuishi K, Suzuki Y, Iwama H, Deguchi K, Uchida N, Sabet EA, Arafa UA, Hassan AT, El-Sayed AA, Masaki T (2008) Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. Int J Oncol 33:1157–1163

    CAS  Google Scholar 

  65. Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YI, Sohn TS, Noh JH, Jung G (2002) Proteome analysis of hepatocellular carcinoma. Biochem Biophys Res Commun 291:1031–1037

    Article  CAS  Google Scholar 

  66. Liang CR, Leow CK, Neo JC, Tan GS, Lo SL, Lim JW, Seow TK, Lai PB, Chung MC (2005) Proteome analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:2258–2271

    Article  CAS  Google Scholar 

  67. Martinez-Chantar ML, Corrales FJ, Martinez-Cruz LA, Garcia-Trevijano ER, Huang ZZ, Chen L, Kanel G, Avila MA, Mato JM, Lu SC (2002) Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J 16:1292–1294

    CAS  Google Scholar 

  68. Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, Zhang L, Xia QC, Wu JR, Wang HY, Zeng R (2004) Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 3:399–409

    Article  CAS  Google Scholar 

  69. Ai J, Tan Y, Ying W, Hong Y, Liu S, Wu M, Qian X, Wang H (2006) Proteome analysis of hepatocellular carcinoma by laser capture microdissection. Proteomics 6:538–546

    Article  CAS  Google Scholar 

  70. Sun W, Xing B, Sun Y, Du X, Lu M, Hao C, Lu Z, Mi W, Wu S, Wei H, Gao X, Zhu Y, Jiang Y, Qian X, He F (2007) Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics 6:1798–1808

    Article  CAS  Google Scholar 

  71. Shin CH, Liu ZP, Passier R, Zhang CL, Wang DZ, Harris TM, Yamagishi H, Richardson JA, Childs G, Olson EN (2002) Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110:725–735

    Article  CAS  Google Scholar 

  72. He QY, Lau GK, Zhou Y, Yuen ST, Lin MC, Kung HF, Chiu JF (2003) Serum biomarkers of hepatitis B virus infected liver inflammation: a proteomic study. Proteomics 3:666–674

    Article  CAS  Google Scholar 

  73. Panduro A, Lin-Lee YC, Chan L, Shafritz DA (1990) Transcriptional and posttranscriptional regulation of apolipoprotein E, A-I, and A-II gene expression in normal rat liver and during several pathophysiologic states. Biochemistry 29:8430–8435

    Article  CAS  Google Scholar 

  74. Qian X, Samadani U, Porcella A, Costa RH (1995) Decreased expression of hepatocyte nuclear factor 3 alpha during the acute-phase response influences transthyretin gene transcription. Mol Cell Biol 15:1364–1376

    CAS  Google Scholar 

  75. Steel LF, Shumpert D, Trotter M, Seeholzer SH, Evans AA, London WT, Dwek R, Block TM (2003) A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics 3:601–609

    Article  CAS  Google Scholar 

  76. Comunale MA, Mattu TS, Lowman MA, Evans AA, London WT, Semmes OJ, Ward M, Drake R, Romano PR, Steel LF, Block TM, Mehta A (2004) Comparative proteomic analysis of de-N-glycosylated serum from hepatitis B carriers reveals polypeptides that correlate with disease status. Proteomics 4:826–838

    Article  CAS  Google Scholar 

  77. Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR, Fang CY, Lu HJ, Yang PY, Tang ZY (2005) Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 5:4581–4588

    Article  CAS  Google Scholar 

  78. Gruden G, Carucci P, Lolli V, Cosso L, Dellavalle E, Rolle E, Cantamessa A, Pinach S, Abate ML, Campra D, Brunello F, Bruno G, Rizzetto M, Perin PC (2013) Serum heat shock protein 27 levels in patients with hepatocellular carcinoma. Cell Stress Chaperones 18:235–241

    Article  CAS  Google Scholar 

  79. Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, Tennant BC, London WT, Evans AA, Blumberg BS, Dwek RA, Mattu TS, Mehta AS (2005) Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A 102:779–784

    Article  CAS  Google Scholar 

  80. D’Ugo E, Argentini C, Giuseppetti R, Canitano A, Catone S, Rapicetta M (2010) The woodchuck hepatitis B virus infection model for the evaluation of HBV therapies and vaccine therapies. Expert Opin Drug Discov 5:1153–1162

    Article  CAS  Google Scholar 

  81. Naitoh A, Aoyagi Y, Asakura H (1999) Highly enhanced fucosylation of serum glycoproteins in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 14:436–445

    Article  CAS  Google Scholar 

  82. Wei H, Li B, Zhang R, Hao X, Huang Y, Qiao Y, Hou J, Li X, Li X (2013) Serum GP73, a marker for evaluating progression in patients with chronic HBV infections. PLoS One 8:e53862

    Article  CAS  Google Scholar 

  83. Cui J, Kang X, Dai Z, Huang C, Zhou H, Guo K, Li Y, Zhang Y, Sun R, Chen J, Li Y, Tang Z, Uemura T, Liu Y (2007) Prediction of chronic hepatitis B, liver cirrhosis and hepatocellular carcinoma by SELDI-based serum decision tree classification. J Cancer Res Clin Oncol 133:825–834

    Article  Google Scholar 

  84. He QY, Zhu R, Lei T, Ng MY, Luk JM, Sham P, Lau GK, Chiu JF (2008) Toward the proteomic identification of biomarkers for the prediction of HBV related hepatocellular carcinoma. J Cell Biochem 103:740–752

    Article  CAS  Google Scholar 

  85. Yang JD, Roberts LR (2010) Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol 7:448–458

    Article  Google Scholar 

  86. Honda M, Kaneko S, Kawai H, Shirota Y, Kobayashi K (2001) Differential gene expression between chronic hepatitis B and C hepatic lesion. Gastroenterology 120:955–966

    Article  CAS  Google Scholar 

  87. Nguyen H, Mudryj M, Guadalupe M, Dandekar S (2003) Hepatitis C virus core protein expression leads to biphasic regulation of the p21 cdk inhibitor and modulation of hepatocyte cell cycle. Virology 312:245–253

    Article  CAS  Google Scholar 

  88. Kim W, Oe Lim S, Kim JS, Ryu YH, Byeon JY, Kim HJ, Kim YI, Heo JS, Park YM, Jung G (2003) Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin Cancer Res 9:5493–5500

    CAS  Google Scholar 

  89. Chan WY, Liu QR, Borjigin J, Busch H, Rennert OM, Tease LA, Chan PK (1989) Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry 28:1033–1039

    Article  CAS  Google Scholar 

  90. Kinoshita M, Miyata M (2002) Underexpression of mRNA in human hepatocellular carcinoma focusing on eight loci. Hepatology 36:433–438

    Article  CAS  Google Scholar 

  91. Selimovic D, El-Khattouti A, Ghozlan H, Haikel Y, Abdelkader O, Hassan M (2012) Hepatitis C virus-related hepatocellular carcinoma: an insight into molecular mechanisms and therapeutic strategies. World J Hepatol 4:342–355

    Google Scholar 

  92. Lin MT, Wang MY, Liaw KY, Lee PH, Chien SF, Tsai JS, Lin-Shiau SY (2001) Superoxide dismutase in hepatocellular carcinoma affects patient prognosis. Hepatogastroenterology 48:1102–1105

    CAS  Google Scholar 

  93. Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du JJ, Hu W, Shen KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu GX, Gu JR, Chen Z, Han ZG (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci U S A 98:15089–15094

    Article  CAS  Google Scholar 

  94. Fukutomi T, Zhou Y, Kawai S, Eguchi H, Wands JR, Li J (2005) Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology 41:1096–1105

    Article  CAS  Google Scholar 

  95. Miller JR (2002) The Wnts. Genome Biol 3:REVIEWS3001

    Google Scholar 

  96. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  Google Scholar 

  97. Lee TH, Tai DI, Cheng CJ, Sun CS, Lin CY, Sheu MJ, Lee WP, Peng CY, Wang AH, Tsai SL (2006) Enhanced nuclear factor-kappa B-associated Wnt-1 expression in hepatitis B- and C-related hepatocarcinogenesis: identification by functional proteomics. J Biomed Sci 13:27–39

    Article  CAS  Google Scholar 

  98. Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF (2000) Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89:2274–2281

    Article  CAS  Google Scholar 

  99. Sarvari J, Mojtahedi Z, Taghavi SA, Kuramitsu Y, Shamsi Shahrabadi M, Ghaderi A, Nakamura K (2013) Differentially expressed proteins in chronic active hepatitis, cirrhosis, and HCC related to HCV infection in comparison with HBV infection: a proteomics study. Hepat Mon 13:e8351

    Article  Google Scholar 

  100. Mondal G, Chatterjee U, Das HR, Chatterjee BP (2009) Enhanced expression of alpha1-acid glycoprotein and fucosylation in hepatitis B patients provides an insight into pathogenesis. Glycoconj J 26:1225–1234

    Article  CAS  Google Scholar 

  101. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 99:15655–15660

    Article  CAS  Google Scholar 

  102. Guillouzo A, Guguen-Guillouzo C (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 4:1279–1294

    Article  CAS  Google Scholar 

  103. Narayan R, Gangadharan B, Hantz O, Antrobus R, Garcia A, Dwek RA, Zitzmann N (2009) Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection. J Proteome Res 8:118–122

    Article  CAS  Google Scholar 

  104. Sokolowska I, Dorobantu C, Woods AG, Macovei A, Branza-Nichita N, Darie CC (2012) Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci 10:47

    Article  CAS  Google Scholar 

  105. Rescher U, Gerke V (2004) Annexins—unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639

    Article  CAS  Google Scholar 

  106. Petrareanu C, Macovei A, Sokolowska I, Woods AG, Lazar C, Radu GL, Darie CC, Branza-Nichita N (2013) Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte- and biliary-like cells. PLoS One 8:e71859

    Article  CAS  Google Scholar 

  107. Darie CC, Deinhardt K, Zhang G, Cardasis HS, Chao MV, Neubert TA (2011) Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics 11:4514–4528

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Romanian Academy project 3 of the Institute of Biochemistry and POSDRU/89/1.5/S/60746; Catalina Petrareanu was supported by the Sectoral Operational Programme Human Resources Development 2007–2013 of the Romanian Ministry of Labour, Family, and Social Protection through the Financial Agreement POSDRU/107/1.5/S/76903 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norica Branza-Nichita Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Branza-Nichita, N., Petrareanu, C., Lazar, C., Sokolowska, I., Darie, C.C. (2014). Using Proteomics to Unravel the Mysterious Steps of the HBV-Life-Cycle. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_22

Download citation

Publish with us

Policies and ethics