Skip to main content

Mass Spectrometry-Based Tissue Imaging of Small Molecules

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Mass spectrometry imaging (MSI) of tissue samples is a promising analytical tool that has quickly become associated with biomedical and pharmacokinetic studies. It eliminates several labor-intensive protocols associated with more classical imaging techniques and provides accurate histological data at a rapid pace. Because mass spectrometry is used as the readout, MSI can be applied to almost any molecule, especially those that are biologically relevant. Many examples of its utility in the study of peptides and proteins have been reported; here we discuss its value in the mass range of small molecules. We explore its success and potential in the analysis of lipids, medicinals, and metal-based compounds by featuring representative studies from MSI laboratories around the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson M, Groseclose MR, Deutch AY, Caprioli RM (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 5:101–108

    Article  CAS  Google Scholar 

  2. Barton-Davis ER, Shoturma DI, Sweeney HL (1999) Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand 167:301–305

    Article  CAS  Google Scholar 

  3. Börner K, Malmberg P, Månsson J-E, Nygren H (2007) Molecular imaging of lipids in cells and tissues. Int J Mass Spectrom 260:128–136

    Article  Google Scholar 

  4. Buccoliero R, Futerman AH (2003) The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacol Res 47:409–419

    Article  CAS  Google Scholar 

  5. Bulley NR, Fattori M, Meisen A, Moyls L (1984) Supercritical fluid extraction of vegetable oil seeds. J Am Oil Chem Soc 61:1362–1365

    Article  CAS  Google Scholar 

  6. Castellino S (2012) MALDI imaging MS analysis of drug distribution in tissue: the right time!(?). Bioanalysis 4:2549–2551

    Article  CAS  Google Scholar 

  7. Castellino S, Groseclose MR, Sigafoos J, Wagner D, De Serres M, Polli JW, Romach E, Myer J, Hamilton B (2013) Central nervous system disposition and metabolism of fosdevirine (GSK2248761), a non-nucleoside reverse transcriptase inhibitor: an LC-MS and matrix-assisted laser desorption/ionization imaging MS investigation into central nervous system toxicity. Chem Res Toxicol 26:241–251

    Article  CAS  Google Scholar 

  8. Castellino S, Groseclose MR, Wagner D (2011) MALDI imaging mass spectrometry: bridging biology and chemistry in drug development. Bioanalysis 3:2427–2441

    Article  CAS  Google Scholar 

  9. Chaurand P, Cornett DS, Caprioli RM (2006) Molecular imaging of thin mammalian tissue sections by mass spectrometry. Curr Opin Biotechnol 17:431–436

    Article  CAS  Google Scholar 

  10. Chun HH, Gatti RA (2004) Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 3:1187–1196

    Article  CAS  Google Scholar 

  11. Chun HH, Sun X, Nahas SA, Teraoka S, Lai C-H, Concannon P, Gatti RA (2003) Improved diagnostic testing for ataxia–telangiectasia by immunoblotting of nuclear lysates for ATM protein expression. Mol Genet Metab 80:437–443

    Article  CAS  Google Scholar 

  12. Colsch B, Jackson SN, Dutta S, Woods AS (2011) Molecular microscopy of brain gangliosides: illustrating their distribution in hippocampal cell layers. ACS Chem Neurosci 2:213–222

    Article  CAS  Google Scholar 

  13. Conte E, Milani R, Morali G, Abballe F (1997) Comparison between accelerated solvent extraction and traditional extraction methods for the analysis of the herbicide diflufenican in soil. J Chromatogr A 765:121–125

    Article  CAS  Google Scholar 

  14. Coons AH, Creech HJ, Jones RN, Berliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170

    CAS  Google Scholar 

  15. Du L, Damoiseaux R, Nahas S, Gao K, Hu H, Pollard JM, Goldstine J, Jung ME, Henning SM, Bertoni C, Gatti RA (2009) Nonaminoglycoside compounds induce read through of nonsense mutations. J Exp Med 206:2285–2297

    Article  CAS  Google Scholar 

  16. Du L, Jung ME, Damoiseaux R, Completo G, Fike F, Ku JM, Nahas S, Piao C, Hu H, Gatti RA (2013) A new series of small molecular weight compounds induce read through of all three types of nonsense mutations in the ATM gene. Mol Ther 21(9):1653–1660

    Article  CAS  Google Scholar 

  17. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG (2011) Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. Chembiochem 12:2129–2132

    Article  CAS  Google Scholar 

  18. Eberlin LS, Liu X, Ferreira CR, Santagata S, Agar NYR, Cooks RG (2011) Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Anal Chem 83:8366–8371

    Article  CAS  Google Scholar 

  19. Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X, Ide JL, Jarmusch AK, Ligon KL, Jolesz FA, Golby AJ, Santagata S, Agar NYR, Cooks RG (2013) Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci 110:1611–1616

    Article  Google Scholar 

  20. Ellis SR, Brown SH, In Het Panhuis M, Blanksby SJ, Mitchell TW (2013) Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 52:329–353

    Article  CAS  Google Scholar 

  21. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, Van Meer G, Vannieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–862

    Article  CAS  Google Scholar 

  22. Ferguson L, Bradshaw R, Wolstenholme R, Clench M, Francese S (2011) Two-step matrix application for the enhancement and imaging of latent fingermarks. Anal Chem 83:5585–5591

    Article  CAS  Google Scholar 

  23. Fuchs B, Süs R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49:450–475

    Article  CAS  Google Scholar 

  24. García-Ayuso LE, Velasco J, Dobarganes MC, Luque de Castro MD (2000) Determination of the oil content of seeds by focused microwave-assisted soxhlet extraction. Chromatographia 52:103–108

    Article  Google Scholar 

  25. Gatti RA (2012) SMRT compounds correct nonsense mutations in primary immunodeficiency and other genetic models. Ann N Y Acad Sci 1250:33–40

    Article  CAS  Google Scholar 

  26. Holthuis JCM, Pomorski T, Raggers RJ, Sprong H, Van Meer G (2001) The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 81:1689–1723

    CAS  Google Scholar 

  27. Hutchinson RW, Cox AG, McLeod CW, Marshall PS, Harper A, Dawson EL, Howlett DR (2005) Imaging and spatial distribution of β-amyloid peptide and metal ions in Alzheimer’s plaques by laser ablation–inductively coupled plasma–mass spectrometry. Anal Biochem 346:225–233

    Article  CAS  Google Scholar 

  28. Lai CH, Chun HH, Nahas SA, Mitui M, Gamo KM, Du L, Gatti RA (2004) Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci U S A 101:15676–15681

    Article  CAS  Google Scholar 

  29. Lazova R, Seeley EH, Keenan M, Gueorguieva R, Caprioli RM (2012) Imaging mass spectrometry—a new and promising method to differentiate spitz nevi from spitzoid malignant melanomas. Am J Dermatopathol 34:82–90

    Article  Google Scholar 

  30. Lear J, Hare DJ, Fryer F, Adlard PA, Finkelstein DI, Doble PA (2012) High-resolution elemental bioimaging of Ca, Mn, Fe, Co, Cu, and Zn employing LA-ICP-MS and hydrogen reaction gas. Anal Chem 84:6707–6714

    Article  CAS  Google Scholar 

  31. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  32. McCombie G, Knochenmuss R (2004) Small-molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences. Anal Chem 76:4990–4997

    Article  CAS  Google Scholar 

  33. McDonnell LA, Heeren RM (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643

    Article  CAS  Google Scholar 

  34. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4:4539–4550

    Google Scholar 

  35. Morosi L, Spinelli P, Zucchetti M, Pretto F, Carrà A, D’incalci M, Giavazzi R, Davoli E (2013) Determination of paclitaxel distribution in solid tumors by nano-particle assisted laser desorption ionization mass spectrometry imaging. PLoS One 8:e72532

    Article  CAS  Google Scholar 

  36. Murphy RC, Hankin JA, Barkley RM (2009) Imaging of lipid species by MALDI mass spectrometry. J Lipid Res 50:S317–S322

    Article  Google Scholar 

  37. Rasey JS, Krohn KA, Grunbaum Z, Spence AM, Menard TW, Wade RA (1986) Synthesis, biodistribution, and autoradiography of radiolabeled S-2-(3-methylaminopropylamino)ethylphosphorothioic acid (WR-3689). Radiat Res 106:366–379

    Article  CAS  Google Scholar 

  38. Reyzer M, Caprioli R (2011) Imaging Mass Spectrometry. In: Banoub J (ed) Detection of biological agents for the prevention of bioterrorism. Springer, The Netherlands

    Google Scholar 

  39. Rubakhin SS, Jurchen JC, Monroe EB, Sweedler JV (2005) Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discov Today 10:823–837

    Article  CAS  Google Scholar 

  40. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131

    Article  CAS  Google Scholar 

  41. Rujoi M, Estrada R, Yappert MC (2004) In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 76:1657–1663

    Article  CAS  Google Scholar 

  42. Sanchez-Carbayo M (2006) Antibody arrays: technical considerations and clinical applications in cancer. Clin Chem 52:1651–1659

    Article  CAS  Google Scholar 

  43. Schultz C, Neef AB, Gadella TW, Goedhart J (2010) Imaging lipids in living cells. Cold Spring Harb Protoc doi:10.1101/pdb.top83

  44. Schwamborn K, Caprioli RM (2010) MALDI imaging mass spectrometry—painting molecular pictures. Mol Oncol 4:529–538

    Article  CAS  Google Scholar 

  45. Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2009) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12:11–26

    Article  Google Scholar 

  46. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT (1986) The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 39:573–583

    CAS  Google Scholar 

  47. Taylor S, King J, List G (1993) Determination of oil content in oilseeds by analytical supercritical fluid extraction. J Am Oil Chem Soc 70:437–439

    Article  CAS  Google Scholar 

  48. Vidova V, Pol J, Volny M, Novak P, Havlicek V, Wiedmer SK, Holopainen JM (2010) Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry. J Lipid Res 51:2295–2302

    Google Scholar 

  49. Wang H-YJ, Liu CB, Wu H-W (2011) A simple desalting method for direct MALDI mass spectrometry profiling of tissue lipids. J Lipid Res 52:840–849

    Article  CAS  Google Scholar 

  50. Watrous JD, Alexandrov T, Dorrestein PC (2011) The evolving field of imaging mass spectrometry and its impact on future biological research. J Mass Spectrom 46:209–222

    Article  CAS  Google Scholar 

  51. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  Google Scholar 

  52. Woods AS, Colsch B, Jackson SN, Post J, Baldwin K, Roux A, Hoffer B, Cox BM, Hoffer M, Rubovitch V, Pick CG, Schultz JA, Balaban C (2013) Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci 4:594–600

    Article  CAS  Google Scholar 

  53. Yan B, Kim ST, Kim CS, Saha K, Moyano DF, Xing Y, Jiang Y, Roberts AL, Alfonso FS, Rotello VM, Vachet RW (2013) Multiplexed imaging of nanoparticles in tissues using laser desorption/ionization mass spectrometry. J Am Chem Soc 135:12564–12567

    Article  CAS  Google Scholar 

  54. Yoshizawa S, Fourmy D, Puglisi JD (1998) Structural origins of gentamicin antibiotic action. EMBO J 17:6437–6448

    Article  CAS  Google Scholar 

  55. Zemski Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111:6491–6512

    Article  CAS  Google Scholar 

  56. Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A (2007) Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther 81:99–103

    Article  CAS  Google Scholar 

  57. Zoriy M, Matusch A, Spruss T, Becker JS (2007) Laser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin. Int J Mass Spectrom 260:102–106

    Article  CAS  Google Scholar 

  58. Zoriy MV, Dehnhardt M, Matusch A, Becker JS (2008) Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 63:375–382

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ruth L. Kirschstein National Research Service Award (Grant No. GM007185, UCLA Cellular and Molecular Biology Training Grant, for C.N.F.) and the US National Institutes of Health Shared Instrumentation Program (Grant No. S10 RR025600 to J.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Loo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferguson, C.N., Fowler, J.W.M., Waxer, J.F., Gatti, R.A., Loo, J.A. (2014). Mass Spectrometry-Based Tissue Imaging of Small Molecules. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_12

Download citation

Publish with us

Policies and ethics