Skip to main content

Mass Spectrometry for Proteomics-Based Investigation

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Abstract

Within the past years, we have witnessed a great improvement in mass spectrometry (MS) and proteomics approaches in terms of instrumentation, protein fractionation, and bioinformatics. With the current technology, protein identification alone is no longer sufficient. Both scientists and clinicians want not only to identify proteins but also to identify the protein’s posttranslational modifications (PTMs), protein isoforms, protein truncation, protein–protein interaction (PPI), and protein quantitation. Here, we describe the principle of MS and proteomics and strategies to identify proteins, protein’s PTMs, protein isoforms, protein truncation, PPIs, and protein quantitation. We also discuss the strengths and weaknesses within this field. Finally, in our concluding remarks we assess the role of mass spectrometry and proteomics in scientific and clinical settings in the near future. This chapter provides an introduction and overview for subsequent chapters that will discuss specific MS proteomic methodologies and their application to specific medical conditions. Other chapters will also touch upon areas that expand beyond proteomics, such as lipidomics and metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BN-PAGE:

Blue native PAGE

CI:

Chemical ionization

CN-PAGE:

Colorless native PAGE

DIGE:

Differential gel electrophoresis

EI:

Electron ionization

ESI:

Electrospray ionization

ESI-MS:

Electrospray ionization mass spectrometry

FT:

Fourier transform

IT:

Ion trap

LC–MS/MS:

Liquid chromatography–mass spectrometry

m/z :

Mass/charge

MALDI:

Matrix-assisted laser desorption ionization

MALDI-MS:

MALDI mass spectrometry

MS:

Mass spectrometry

Mw:

Molecular weight

Q:

Quadrupole

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TIC:

Total ion current/chromatogram

TOF:

Time of flight

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    CAS  Google Scholar 

  2. Aivaliotis M, Karas M, Tsiotis G (2006) High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of cytoplasmatic protein complexes from Chlorobium tepidum. Photosynth Res 88:143–157

    CAS  Google Scholar 

  3. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21:315–318

    CAS  Google Scholar 

  4. Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, Schamel WW (2004) Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol Cell Proteomics 3:176–182

    CAS  Google Scholar 

  5. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    CAS  Google Scholar 

  6. Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29:124–130

    CAS  Google Scholar 

  7. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  Google Scholar 

  8. Zhang G, Spellman DS, Skolnik EY, Neubert TA (2006) Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J Proteome Res 5:581–588

    CAS  Google Scholar 

  9. Darie C (2013) Mass spectrometry and proteomics: principle, workflow, challenges and perspectives. Mod Chem Appl 1:e105

    Google Scholar 

  10. Darie CC (2013) Mass spectrometry and its application in life sciences. Aust J Chem 66:1–2

    Google Scholar 

  11. Ngounou Wetie AG, Sokolowska I, Woods AG, Darie CC (2013) Identification of post-translational modifications by mass spectrometry. Aust J Chem 66:734–748

    Google Scholar 

  12. Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Deinhardt K, Darie CC (2014) Protein-protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 71(2):205–228

    CAS  Google Scholar 

  13. Ngounou Wetie AG, Sokolowska I, Wormwood K, Michel TM, Thome J, Darie CC, Woods AG (2013) Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatry 1:8

    Google Scholar 

  14. Sokolowska I, Ngounou Wetie AG, Roy U, Woods AG, Darie CC (2013) Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochim Biophys Acta 1834:1474–1483

    CAS  Google Scholar 

  15. Sokolowska I, Ngounou Wetie AG, Woods AG, Darie CC (2013) Applications of mass spectrometry in proteomics. Aust J Chem 66:721–733

    CAS  Google Scholar 

  16. Sokolowska I, Woods AG, Wagner J, Dorler J, Wormwood K, Thome J, Darie CC (2011) Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  17. Woods AG, Ngounou Wetie AG, Sokolowska I, Russell S, Ryan JP, Michel TM, Thome J, Darie CC (2013) Mass spectrometry as a tool for studying autism spectrum disorder. J Mol Psychiatry 1:6

    Google Scholar 

  18. Darie CC, Biniossek ML, Winter V, Mutschler B, Haehnel W (2005) Isolation and structural characterization of the Ndh complex from mesophyll and bundle sheath chloroplasts of Zea mays. Febs J 272:2705–2716

    CAS  Google Scholar 

  19. Darie CC, Janssen WG, Litscher ES, Wassarman PM (2008) Purified trout egg vitelline envelope proteins VEbeta and VEgamma polymerize into homomeric fibrils from dimers in vitro. Biochim Biophys Acta 1784:385–392

    CAS  Google Scholar 

  20. Schagger H, Cramer WA, von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217:220–230

    CAS  Google Scholar 

  21. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    CAS  Google Scholar 

  22. Spellman DS, Deinhardt K, Darie CC, Chao MV, Neubert TA (2008) Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7:1067–1076

    CAS  Google Scholar 

  23. Darie CC, Shetty V, Spellman DS, Zhang G, Xu C, Cardasis HL, Blais S, Fenyo D, Neubert TA (2008) Blue Native PAGE and mass spectrometry analysis of the ephrin stimulation- dependent protein-protein interactions in NG108-EphB2 cells. Springer, Düsseldorf, Germany

    Google Scholar 

  24. Darie CC, Litscher ES, Wassarman PM (2008) Structure, processing, and polymerization of rainbow trout egg vitelline envelope proteins. Springer, Düsseldorf, Germany

    Google Scholar 

  25. Darie CC, Biniossek ML, Gawinowicz MA, Milgrom Y, Thumfart JO, Jovine L, Litscher ES, Wassarman PM (2005) Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. J Biol Chem 280:37585–37598

    CAS  Google Scholar 

  26. Darie CC, Biniossek ML, Jovine L, Litscher ES, Wassarman PM (2004) Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry 43:7459–7478

    CAS  Google Scholar 

  27. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Google Scholar 

  28. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    CAS  Google Scholar 

  29. Jovine L, Darie CC, Litscher ES, Wassarman PM (2005) Zona pellucida domain proteins. Annu Rev Biochem 74:83–114

    CAS  Google Scholar 

  30. Litscher ES, Janssen WG, Darie CC, Wassarman PM (2008) Purified mouse egg zona pellucida glycoproteins polymerize into homomeric fibrils under non-denaturing conditions. J Cell Physiol 214:153–157

    CAS  Google Scholar 

  31. Wassarman PM, Jovine L, Qi H, Williams Z, Darie C, Litscher ES (2005) Recent aspects of mammalian fertilization research. Mol Cell Endocrinol 234:95–103

    CAS  Google Scholar 

  32. Darie C (2013) Investigation of protein-protein interactions by blue native-PAGE & mass spectrometry. Mod Chem Appl 1:e111

    Google Scholar 

  33. Darie C (2013) Post-translational modification (PTM) proteomics: challenges and perspectives. Mod Chem appl 1:e114

    Google Scholar 

  34. Woods AG, Sokolowska I, Yakubu R, Butkiewicz M, LaFleur M, Talbot C, Darie CC (2011) Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  35. Ghezzi P, Bonetto V (2003) Redox proteomics: identification of oxidatively modified proteins. Proteomics 3:1145–1153

    CAS  Google Scholar 

  36. Li X, Pan W, Yang GZ, Di YN, Zhao F, Zhu LY, Jiang ZH (2011) Proteome analysis of differential protein expression in brain of rats with type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes 119:265–270

    CAS  Google Scholar 

  37. Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, Usui T, Osada H (2010) Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chem Biol 17:460–470

    CAS  Google Scholar 

  38. Polden J, McManus CA, Remedios CD, Dunn MJ (2011) A 2-D gel reference map of the basic human heart proteome. Proteomics 11(17):3582–3586

    CAS  Google Scholar 

  39. Stefanescu R, Iacob RE, Damoc EN, Marquardt A, Amstalden E, Manea M, Perdivara I, Maftei M, Paraschiv G, Przybylski M (2007) Mass spectrometric approaches for elucidation of antigenantibody recognition structures in molecular immunology. Eur J Mass Spectrom (Chichester, Eng) 13:69–75

    CAS  Google Scholar 

  40. Sun X, Jia HL, Xiao CL, Yin XF, Yang XY, Lu J, He X, Li N, Li H, He QY (2011) Bacterial proteome of Streptococcus pneumoniae through multidimensional separations coupled with LC-MS/MS. OMICS 15(7–8):477–482

    CAS  Google Scholar 

  41. Wang Y, Li R, Du D, Zhang C, Yuan H, Zeng R, Chen Z (2006) Proteomic analysis reveals novel molecules involved in insulin signaling pathway. J Proteome Res 5:846–855

    CAS  Google Scholar 

  42. Bauw G, Rasmussen HH, van den Bulcke M, van Damme J, Puype M, Gesser B, Celis JE, Vandekerckhove J (1990) Two-dimensional gel electrophoresis, protein electroblotting and microsequencing: a direct link between proteins and genes. Electrophoresis 11:528–536

    CAS  Google Scholar 

  43. Celis JE, Gromov P (1999) 2D protein electrophoresis: can it be perfected? Curr Opin Biotechnol 10:16–21

    CAS  Google Scholar 

  44. Celis JE, Gromov P, Ostergaard M, Madsen P, Honore B, Dejgaard K, Olsen E, Vorum H, Kristensen DB, Gromova I, Haunso A, Van Damme J, Puype M, Vandekerckhove J, Rasmussen HH (1996) Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis. FEBS Lett 398:129–134

  45. Celis JE, Gromova I, Moreira JM, Cabezon T, Gromov P (2004) Impact of proteomics on bladder cancer research. Pharmacogenomics 5:381–394

    CAS  Google Scholar 

  46. Taurines R, Dudley E, Conner AC, Grassl J, Jans T, Guderian F, Mehler-Wex C, Warnke A, Gerlach M, Thome J (2010) Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry. Eur Arch Psychiatry Clin Neurosci 260:249–255

    Google Scholar 

  47. Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J (2011) Proteomic research in psychiatry. J Psychopharmacol 25:151–196

    CAS  Google Scholar 

  48. Dass C (2007) Fundamentals of contemporary mass spectrometry. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  49. Hoffmann ED, Stroobant V (2007) Mass spectrometry: principles and applications, 3rd edn. J. Wiley, Chichester, West Sussex, England

    Google Scholar 

  50. Abate S, Ahn YG, Kind T, Cataldi TR, Fiehn O (2010) Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization. Rapid Commun Mass Spectrom 24:1172–1180

    CAS  Google Scholar 

  51. Harrison AG (1992) Chemical ionization mass spectrometry, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  52. Rivera-Rodriguez LB, Rodriguez-Estrella R, Ellington JJ, Evans JJ (2007) Quantification of low levels of organochlorine pesticides using small volumes (<or = 100 microl) of plasma of wild birds through gas chromatography negative chemical ionization mass spectrometry. Environ Pollut 148:654–662

    CAS  Google Scholar 

  53. Dougherty RC (1981) Negative chemical ionization mass spectrometry: applications in environmental analytical chemistry. Biomed Mass Spectrom 8:283–292

    CAS  Google Scholar 

  54. Zaikin VG, Halket JM (2006) Derivatization in mass spectrometry—8. Soft ionization mass spectrometry of small molecules. Eur J Mass Spectrom (Chichester, Eng) 12:79–115

    CAS  Google Scholar 

  55. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    CAS  Google Scholar 

  56. Martin SE, Shabanowitz J, Hunt DF, Marto JA (2000) Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 72:4266–4274

    CAS  Google Scholar 

  57. Parker CE, Warren MR, Mocanu V (2010) Mass spectrometry for proteomics

    Google Scholar 

  58. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    CAS  Google Scholar 

  59. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    CAS  Google Scholar 

  60. Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    CAS  Google Scholar 

  61. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    CAS  Google Scholar 

  62. Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107:715–726

    CAS  Google Scholar 

  63. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588

    CAS  Google Scholar 

  64. Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    CAS  Google Scholar 

  65. McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP (2007) Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274:6256–6268

    CAS  Google Scholar 

  66. McDonald WH, Yates JR III (2003) Shotgun proteomics: integrating technologies to answer biological questions. Curr Opin Mol Ther 5:302–309

    CAS  Google Scholar 

  67. Wu S, Lourette NM, Tolic N, Zhao R, Robinson EW, Tolmachev AV, Smith RD, Pasa-Tolic L (2009) An integrated top-down and bottom-up strategy for broadly characterizing protein isoforms and modifications. J Proteome Res 8:1347–1357

    CAS  Google Scholar 

  68. Han X, Aslanian A, Yates JR III (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    CAS  Google Scholar 

  69. Savitski MF, Savitski MM (2010) Unbiased detection of posttranslational modifications using mass spectrometry. Methods Mol Biol 673:203–210

    CAS  Google Scholar 

  70. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    CAS  Google Scholar 

  71. Marino K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6:713–723

    CAS  Google Scholar 

  72. Read EK, Park JT, Brorson KA (2011) Industry and regulatory experience of the glycosylation of monoclonal antibodies. Biotechnol Appl Biochem 58:213–219

    CAS  Google Scholar 

  73. Kamoda S, Kakehi K (2008) Evaluation of glycosylation for quality assurance of antibody pharmaceuticals by capillary electrophoresis. Electrophoresis 29:3595–3604

    CAS  Google Scholar 

  74. Leymarie N, Zaia J (2012) Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 84:3040–3048

    CAS  Google Scholar 

  75. Pan S, Chen R, Aebersold R, Brentnall TA (2011) Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol Cell Proteomics 10(R110):003251

    Google Scholar 

  76. Morelle W, Michalski JC (2007) Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2:1585–1602

    CAS  Google Scholar 

  77. Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007) Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 849:115–128

    CAS  Google Scholar 

  78. Mechref Y, Madera M, Novotny MV (2008) Glycoprotein enrichment through lectin affinity techniques. Methods Mol Biol 424:373–396

    CAS  Google Scholar 

  79. Bond MR, Kohler JJ (2007) Chemical methods for glycoprotein discovery. Curr Opin Chem Biol 11:52–58

    CAS  Google Scholar 

  80. Tarrant MK, Cole PA (2009) The chemical biology of protein phosphorylation. Annu Rev Biochem 78:797–825

    CAS  Google Scholar 

  81. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    CAS  Google Scholar 

  82. Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268:5001–5010

    CAS  Google Scholar 

  83. Badiola N, Suarez-Calvet M, Lleo A (2010) Tau phosphorylation and aggregation as a therapeutic target in tauopathies. CNS Neurol Disord Drug Targets 9:727–740

    CAS  Google Scholar 

  84. Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    CAS  Google Scholar 

  85. Strebhardt K (2010) Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 9:643–660

    CAS  Google Scholar 

  86. Le Blanc JC, Hager JW, Ilisiu AM, Hunter C, Zhong F, Chu I (2003) Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (Q TRAP) used for high sensitivity proteomics applications. Proteomics 3:859–869

    Google Scholar 

  87. Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144

    CAS  Google Scholar 

  88. Xu CF, Lu Y, Ma J, Mohammadi M, Neubert TA (2005) Identification of phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification. Mol Cell Proteomics 4:809–818

    CAS  Google Scholar 

  89. Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43:1009–1024

    CAS  Google Scholar 

  90. Corthals GL, Aebersold R, Goodlett DR (2005) Identification of phosphorylation sites using microimmobilized metal affinity chromatography. Methods Enzymol 405:66–81

    CAS  Google Scholar 

  91. Ngounou Wetie AG, Sokolowska I, Woods AG, Wormwood KL, Dao S, Patel S, Clarkson BD, Darie CC (2013) Automated mass spectrometry-based functional assay for the routine analysis of the secretome. J Lab Autom 18:19–29

    CAS  Google Scholar 

  92. Gorman JJ, Wallis TP, Pitt JJ (2002) Protein disulfide bond determination by mass spectrometry. Mass Spectrom Rev 21:183–216

    CAS  Google Scholar 

  93. McAuley A, Jacob J, Kolvenbach CG, Westland K, Lee HJ, Brych SR, Rehder D, Kleemann GR, Brems DN, Matsumura M (2008) Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 17:95–106

    CAS  Google Scholar 

  94. Sokolowska I, Gawinowicz MA, Ngounou Wetie AG, Darie CC (2012) Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis 33:2527–2536

    CAS  Google Scholar 

  95. Sokolowska I, Ngounou Wetie AG, Woods AG, Darie CC (2012) Automatic determination of disulfide bridges in proteins. J Lab Autom 17:408–416

    CAS  Google Scholar 

  96. Panchaud A, Affolter M, Moreillon P, Kussmann M (2008) Experimental and computational approaches to quantitative proteomics: status quo and outlook. J Proteomics 71:19–33

    CAS  Google Scholar 

  97. Berkelman T (2008) Quantitation of protein in samples prepared for 2-D electrophoresis. Methods Mol Biol 424:43–49

    CAS  Google Scholar 

  98. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    CAS  Google Scholar 

  99. Xie F, Liu T, Qian WJ, Petyuk VA, Smith RD (2011) Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 286:25443–25449

    CAS  Google Scholar 

  100. Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8:787–797

    CAS  Google Scholar 

  101. Negishi A, Ono M, Handa Y, Kato H, Yamashita K, Honda K, Shitashige M, Satow R, Sakuma T, Kuwabara H, Omura K, Hirohashi S, Yamada T (2009) Large-scale quantitative clinical proteomics by label-free liquid chromatography and mass spectrometry. Cancer Sci 100:514–519

    CAS  Google Scholar 

  102. Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, Hirohashi S, Yamada T (2006) Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics 5:1338–1347

    CAS  Google Scholar 

  103. Qian WJ, Jacobs JM, Camp DG II, Monroe ME, Moore RJ, Gritsenko MA, Calvano SE, Lowry SF, Xiao W, Moldawer LL, Davis RW, Tompkins RG, Smith RD (2005) Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics 5:572–584

    CAS  Google Scholar 

  104. Petyuk VA, Jaitly N, Moore RJ, Ding J, Metz TO, Tang K, Monroe ME, Tolmachev AV, Adkins JN, Belov ME, Dabney AR, Qian WJ, Camp DG II, Smith RD (2008) Elimination of systematic mass measurement errors in liquid chromatography-mass spectrometry based proteomics using regression models and a priori partial knowledge of the sample content. Anal Chem 80:693–706

    CAS  Google Scholar 

  105. Strittmatter EF, Ferguson PL, Tang K, Smith RD (2003) Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J Am Soc Mass Spectrom 14:980–991

    CAS  Google Scholar 

  106. Zhang R, Regnier FE (2002) Minimizing resolution of isotopically coded peptides in comparative proteomics. J Proteome Res 1:139–147

    CAS  Google Scholar 

  107. Julka S, Regnier F (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3:350–363

    CAS  Google Scholar 

  108. Bronstrup M (2004) Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics 1:503–512

    Google Scholar 

  109. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945

    CAS  Google Scholar 

  110. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35:265–273

    CAS  Google Scholar 

  111. Zhang G, Neubert TA (2011) Comparison of three quantitative phosphoproteomic strategies to study receptor tyrosine kinase signaling. J Proteome Res 10:5454–5462

    CAS  Google Scholar 

  112. Zhang G, Deinhardt K, Chao MV, Neubert TA (2011) Study of neurotrophin-3 signaling in primary cultured neurons using multiplex stable isotope labeling with amino acids in cell culture. J Proteome Res 10:2546–2554

    CAS  Google Scholar 

  113. Deinhardt K, Kim T, Spellman DS, Mains RE, Eipper BA, Neubert TA, Chao MV, Hempstead BL (2011) Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci Signal 4:ra82

    Google Scholar 

  114. Zhang G, Ueberheide BM, Waldemarson S, Myung S, Molloy K, Eriksson J, Chait BT, Neubert TA, Fenyo D (2010) Protein quantitation using mass spectrometry. Methods Mol Biol 673:211–222

    CAS  Google Scholar 

  115. Neubert TA, Tempst P (2010) Super-SILAC for tumors and tissues. Nat Methods 7:361–362

    CAS  Google Scholar 

  116. Zhang G, Neubert TA (2009) Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation. Methods Mol Biol 527:79–92, xi

    CAS  Google Scholar 

  117. Zhang G, Fenyo D, Neubert TA (2009) Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. J Proteome Res 8:1285–1292

    CAS  Google Scholar 

  118. Zhang G, Fenyo D, Neubert TA (2008) Screening for EphB signaling effectors using SILAC with a linear ion trap-orbitrap mass spectrometer. J Proteome Res 7:4715–4726

    CAS  Google Scholar 

  119. Zhang G, Neubert TA (2006) Automated comparative proteomics based on multiplex tandem mass spectrometry and stable isotope labeling. Mol Cell Proteomics 5:401–411

    CAS  Google Scholar 

  120. Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeill J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb MJ (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci U S A 105:692–697

    CAS  Google Scholar 

  121. Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fassler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Google Scholar 

  122. Zanivan S, Krueger M, Mann M (2012) In vivo quantitative proteomics: the SILAC mouse. Methods Mol Biol 757:435–450

    Google Scholar 

  123. Muth T, Keller D, Puetz SM, Martens L, Sickmann A, Boehm AM (2010) jTraqX: a free, platform independent tool for isobaric tag quantitation at the protein level. Proteomics 10:1223–1225

    CAS  Google Scholar 

  124. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    CAS  Google Scholar 

  125. Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931

    CAS  Google Scholar 

  126. Holman SW, Sims PF, Eyers CE (2012) The use of selected reaction monitoring in quantitative proteomics. Bioanalysis 4:1763–1786

    CAS  Google Scholar 

  127. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci U S A 104:5860–5865

    CAS  Google Scholar 

  128. Duncan MW, Aebersold R, Caprioli RM (2010) The pros and cons of peptide-centric proteomics. Nat Biotechnol 28:659–664

    CAS  Google Scholar 

  129. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–641

    CAS  Google Scholar 

  130. Koh GC, Porras P, Aranda B, Hermjakob H, Orchard SE (2012) Analyzing protein-protein interaction networks. J Proteome Res 11:2014–2031

    CAS  Google Scholar 

  131. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6:e1000807

    Google Scholar 

  132. Cavanagh J, Thompson R, Bobay B, Benson LM, Naylor S (2002) Stoichiometries of protein-protein/DNA binding and conformational changes for the transition-state regulator AbrB measured by pseudo cell-size exclusion chromatography-mass spectrometry. Biochemistry 41:7859–7865

    CAS  Google Scholar 

  133. Wen J, Arakawa T, Philo JS (1996) Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Anal Biochem 240:155–166

    CAS  Google Scholar 

  134. Mayer CL, Snyder WK, Swietlicka MA, Vanschoiack AD, Austin CR, McFarland BJ (2009) Size-exclusion chromatography can identify faster-associating protein complexes and evaluate design strategies. BMC Res Notes 2:135

    Google Scholar 

  135. Berkowitz SA (2006) Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J 8:E590–E605

    CAS  Google Scholar 

  136. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59:94–123

    CAS  Google Scholar 

  137. Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC (2012) Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. J Biol Chem 287:1719–1733

    CAS  Google Scholar 

  138. Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC (2013) Investigation of stable and transient protein-protein interactions: past, present, and future. Proteomics 13(3–4):538–557

    CAS  Google Scholar 

  139. Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC (2012) Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. FEBS J 279:2579–2594

    CAS  Google Scholar 

  140. Chautard E, Fatoux-Ardore M, Ballut L, Thierry-Mieg N, Ricard-Blum S (2011) MatrixDB, the extracellular matrix interaction database. Nucleic Acids Res 39:D235–D240

    CAS  Google Scholar 

  141. Pflieger D, Gonnet F, de la Fuente van Bentem S, Hirt H, de la Fuente A (2011) Linking the proteins—elucidation of proteome-scale networks using mass spectrometry. Mass Spectrom Rev 30:268–297

    CAS  Google Scholar 

  142. Suter B, Kittanakom S, Stagljar I (2008) Two-hybrid technologies in proteomics research. Curr Opin Biotechnol 19:316–323

    CAS  Google Scholar 

  143. Suter B, Kittanakom S, Stagljar I (2008) Interactive proteomics: what lies ahead? Biotechniques 44:681–691

    CAS  Google Scholar 

  144. Krause F (2006) Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 27:2759–2781

    CAS  Google Scholar 

  145. Sokolova L, Wittig I, Barth HD, Schagger H, Brutschy B, Brandt U (2010) Laser-induced liquid bead ion desorption-MS of protein complexes from blue-native gels, a sensitive top-down proteomic approach. Proteomics 10:1401–1407

    CAS  Google Scholar 

  146. Darie CC, Deinhardt K, Zhang G, Cardasis HS, Chao MV, Neubert TA (2011) Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics 11:4514–4528

    CAS  Google Scholar 

  147. Heck AJ, Van Den Heuvel RH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23:368–389

    CAS  Google Scholar 

  148. Kaddis CS, Lomeli SH, Yin S, Berhane B, Apostol MI, Kickhoefer VA, Rome LH, Loo JA (2007) Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J Am Soc Mass Spectrom 18:1206–1216

    CAS  Google Scholar 

  149. Petyuk VA, Qian WJ, Chin MH, Wang H, Livesay EA, Monroe ME, Adkins JN, Jaitly N, Anderson DJ, Camp DG II, Smith DJ, Smith RD (2007) Spatial mapping of protein abundances in the mouse brain by voxelation integrated with high-throughput liquid chromatography-mass spectrometry. Genome Res 17:328–336

    CAS  Google Scholar 

  150. Qian WJ, Petritis BO, Kaushal A, Finnerty CC, Jeschke MG, Monroe ME, Moore RJ, Schepmoes AA, Xiao W, Moldawer LL, Davis RW, Tompkins RG, Herndon DN, Camp DG II, Smith RD (2010) Plasma proteome response to severe burn injury revealed by 18O-labeled “universal” reference-based quantitative proteomics. J Proteome Res 9:4779–4789

    CAS  Google Scholar 

  151. Zhong Y, Hyung SJ, Ruotolo BT (2012) Ion mobility-mass spectrometry for structural proteomics. Expert Rev Proteomics 9:47–58

    CAS  Google Scholar 

  152. Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422:216–225

    CAS  Google Scholar 

  153. Jurneczko E, Barran PE (2011) How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136:20–28

    CAS  Google Scholar 

  154. Scarff CA, Thalassinos K, Hilton GR, Scrivens JH (2008) Travelling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Commun Mass Spectrom 22:3297–3304

    CAS  Google Scholar 

  155. Roberts GC, Smith CW (2002) Alternative splicing: combinatorial output from the genome. Curr Opin Chem Biol 6:375–383

    CAS  Google Scholar 

  156. Paulo JA, Kadiyala V, Banks PA, Steen H, Conwell DL (2012) Mass spectrometry-based proteomics for translational research: a technical overview. Yale J Biol Med 85:59–73

    CAS  Google Scholar 

  157. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41:3912–3928

    CAS  Google Scholar 

  158. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    CAS  Google Scholar 

  159. Das N, Biswas B, Khera R (2013) Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. Adv Exp Med Biol 734:55–81

    Google Scholar 

  160. McMahon G (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist 5(Suppl 1):3–10

    CAS  Google Scholar 

  161. Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8:161–173

    CAS  Google Scholar 

  162. Whitelegge J, Halgand F, Souda P, Zabrouskov V (2006) Top-down mass spectrometry of integral membrane proteins. Expert Rev Proteomics 3:585–596

    CAS  Google Scholar 

  163. Souda P, Ryan CM, Cramer WA, Whitelegge J (2011) Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry. Methods 55:330–336

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Laura Mulderig, Scott Nichols, and their colleagues (Waters Corporation) for their generous support in setting up the Proteomics Center at Clarkson University. CCD thanks Drs. Thomas A. Neubert (New York University), Belinda Willard (Cleveland Clinic), and Gregory Wolber and David Mclaughin (Eastman Kodak Company) for donation of a TofSpec2E MALDI-MS (each). CCD thanks his advisors, Vlad Artenie, Wolfgang Haehnel, Paul M. Wassarman, and Thomas A. Neubert, for their advice and support. This work was supported in part by the Keep a Breast Foundation (KEABF-375-35054), the Redcay Foundation (SUNY Plattsburgh), the Alexander von Humboldt Foundation, SciFund Challenge, private donations (Ms. Mary Stewart Joyce and Mr. Kenneth Sandler), the David A. Walsh fellowship, and by the U.S. Army research office (DURIP grant #W911NF-11-1-0304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Woods, A.G. et al. (2014). Mass Spectrometry for Proteomics-Based Investigation. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_1

Download citation

Publish with us

Policies and ethics