Skip to main content

Advances in Radiotherapy for Locally Advanced NSCLC

  • Chapter
  • First Online:
New Therapeutic Strategies in Lung Cancers

Abstract

Radiation therapy plays a central role in patients with locally advanced NSCLC who are not eligible for surgery. In fit patients, radiation is administered with concurrent chemotherapy leading to improved survival compared to either modality alone or the sequence of both. Different strategies to improve local control have been explored. Multiple dose escalation protocols produced higher local control rates and promising 2-year survival rates at radiation doses above 70 or even 80 Gy. However, higher doses are currently not recommended following the results of the recent phase III RTOG 0617 trial comparing standard dose radiotherapy with highdose (74 Gy) conformal radiotherapy which demonstrated a significant increase in the risk of death in the high dose arm. Altered fractionation regimens using concomitant boost or hyperfractionated and/or accelerated radiation therapy have reported to be successful, but logistics limited its use in routine practice. Technical advances in radiation therapy include PET CT planning, visualization of tumour hypoxia by dynamic PET-CT, stereotactic boost on hypoxic areas, proton beam therapy, IMRT and image-guided radiation therapy. The best systemic regimen to be used concurrently with radiation has yet to be defined; as has the role of induction and consolidation therapy in addition to concurrent chemoradiotherapy. Monoclonal antibodies such as bevacizumab and cetuximab have not been able to improve outcomes and the results of the phase III study of the novel anti-folate pemetrexed in combination with cisplatin compared to standard etoposide/cisplatin are awaited. The role of targeted agents in molecularly selected subgroups and the optimal treatment approach in unfit and elderly patients has yet to be defined and are the subject of ongoing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Little AG, et al. Patterns of surgical care of lung cancer patients. Ann Thorac Surg. 2005;80:2051–6; discussion 2056.

    Article  PubMed  Google Scholar 

  2. Girard N, Mornex F. Radiotherapy for locally advanced non-small cell lung cancer. Eur J Cancer (Oxf Engl). 2009;199045 Suppl 1:113–25.

    Article  Google Scholar 

  3. Mauguen A, et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: a re-analysis of meta-analyses of individual patients’ data. Lancet Oncol. 2013;14:619–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roswit B, et al. The survival of patients with inoperable lung cancer: a large-scale randomized study of radiation therapy versus placebo. Radiology. 1968;90:688–97.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson DH, et al. Thoracic radiotherapy does not prolong survival in patients with locally advanced, unresectable non-small cell lung cancer. Ann Intern Med. 1990;113:33–8.

    Article  PubMed  CAS  Google Scholar 

  6. Machtay M, et al. Defining local-regional control and its importance in locally advanced non-small cell lung carcinoma. J Thorac Oncol. 2012;7:716–22.

    Article  PubMed  Google Scholar 

  7. Dillman RO, et al. A randomized trial of induction chemotherapy plus high-dose radiation versus radiation alone in stage III non-small-cell lung cancer. N Engl J Med. 1990;323:940–5.

    Article  PubMed  CAS  Google Scholar 

  8. Kubota K, et al. Role of radiotherapy in combined modality treatment of locally advanced non-small-cell lung cancer. J Clin Oncol. 1994;12:1547–52.

    PubMed  CAS  Google Scholar 

  9. Schaake-Koning C, et al. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N Engl J Med. 1992;326:524–30.

    Article  PubMed  CAS  Google Scholar 

  10. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. Non-small Cell Lung Cancer Collaborative Group. BMJ. 1995;311:899–909.

    Google Scholar 

  11. Aupérin A, et al. Concomitant radio-chemotherapy based on platin compounds in patients with locally advanced non-small cell lung cancer (NSCLC): a meta-analysis of individual data from 1764 patients. Ann Oncol. 2006;17:473–83.

    Article  PubMed  Google Scholar 

  12. Okawara G, Mackay JA, Evans WK, Ung YC, Lung Cancer Disease Site Group of Cancer Care Ontario’s Program in Evidence-based Care. Management of unresected stage III non-small cell lung cancer: a systematic review. J Thorac Oncol. 2006;1:377–93.

    Article  PubMed  Google Scholar 

  13. Delbaldo C, et al. Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA. 2004;292:470–84.

    Article  PubMed  CAS  Google Scholar 

  14. Topkan E, Parlak C, Topuk S, Guler OC, Selek U. Outcomes of aggressive concurrent radiochemotherapy in highly selected septuagenarians with stage IIIB non-small cell lung carcinoma: retrospective analysis of 89 patients. Lung Cancer. 2013;81:226–30.

    Article  PubMed  Google Scholar 

  15. Atagi S, et al. Thoracic radiotherapy with or without daily low-dose carboplatin in elderly patients with non-small-cell lung cancer: a randomised, controlled, phase 3 trial by the Japan Clinical Oncology Group (JCOG0301). Lancet Oncol. 2012;13:671–8.

    Article  PubMed  CAS  Google Scholar 

  16. Aupérin A, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Thorac Oncol. 2010;28:2181–90.

    Article  Google Scholar 

  17. Pisters KMW, et al. Cancer Care Ontario and American Society of Clinical Oncology adjuvant chemotherapy and adjuvant radiation therapy for stages I-IIIA resectablenon small-cell lung cancer guideline. J Thorac Oncol. 2007;25:5506–18.

    Article  Google Scholar 

  18. Belani CP, et al. Combined chemoradiotherapy regimens of paclitaxel and carboplatin for locally advanced non-small-cell lung cancer: a randomized phase II locally advanced multi-modality protocol. J Thorac Oncol. 2005;23:5883–91.

    Article  CAS  Google Scholar 

  19. Van Meerbeeck JP, et al. Mature results of PulmonArt: involved-field 3D radiotherapy (RT) and docetaxel/cisplatin chemotherapy (CT) in a randomised phase 2 study comparing concurrent CT-RT followed by consolidation CT, with induction CT followed by concurrent CT-RT in patients (pts) with stage III non-small cell lung cancer (NSCLC): B5-06. J Thorac Oncol. 2007;2(8):S349–50.

    Article  Google Scholar 

  20. Garrido P, et al. Predictors of long-term survival in patients with lung cancer included in the randomized Spanish Lung Cancer Group 0008 phase II trial using concomitant chemoradiation with docetaxel and carboplatin plus induction or consolidation chemotherapy. Clin Lung Cancer. 2009;10:180–6.

    Article  PubMed  CAS  Google Scholar 

  21. Guckenberger M, Wilbert J, Richter A, Baier K, Flentje M. Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;79:901–8.

    Article  PubMed  Google Scholar 

  22. Giraud P, et al. Respiratory gating techniques for optimization of lung cancer radiotherapy. J Thorac Oncol. 2011;6:2058–68.

    Article  PubMed  Google Scholar 

  23. Liu HH, et al. Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1268–79.

    Article  PubMed  Google Scholar 

  24. Liao ZX, et al. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(3):775–81.

    Article  PubMed  Google Scholar 

  25. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT): contents. J ICRU. 2010;10:NP–NP.

    Google Scholar 

  26. Bortfeld T, Jiang SB, Rietzel E. Effects of motion on the total dose distribution. Semin Radiat Oncol. 2004;14(1):41–51.

    Article  PubMed  Google Scholar 

  27. Thomas EM, et al. Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency. J Appl Clin Med Phys. 2013;14:4328.

    PubMed  Google Scholar 

  28. Ong CL, Dahele M, Slotman BJ, Verbakel WFAR. Dosimetric impact of the interplay effect during stereotactic lung radiation therapy delivery using flattening filter-free beams and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2013;86:743–8.

    Article  PubMed  Google Scholar 

  29. Schmidt ML, Hoffmann L, Kandi M, Møller DS, Poulsen PR. Dosimetric impact of respiratory motion, interfraction baseline shifts, and anatomical changes in radiotherapy of non-small cell lung cancer. Acta Oncol. 2013;52:1490–6.

    Article  PubMed  Google Scholar 

  30. Schwarz M, et al. Impact of geometrical uncertainties on 3D CRT and IMRT dose distributions for lung cancer treatment. Int J Radiat Oncol Biol Phys. 2006;65(4):1260–9.

    Article  PubMed  Google Scholar 

  31. Chapet O, et al. Potential benefits of using non coplanar field and intensity modulated radiation therapy to preserve the heart in irradiation of lung tumors in the middle and lower lobes. Radiother Oncol. 2006;80:333–40.

    Article  PubMed  Google Scholar 

  32. Jiang Z-Q, et al. Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys. 2012;83(1):332–9.

    Article  PubMed  Google Scholar 

  33. Uyterlinde W, Chen C, Sonke JJ, De Bois J, Belderbos J, Van Den Heuvel M. Vertebral fractures in NSCLC patients treated with IMRT and concurrent chemotherapy. World lung cancer 2013:O14.02.

    Google Scholar 

  34. Shirvani SM, et al. Intensity modulated radiotherapy for stage III non-small cell lung cancer in the United States: predictors of use and association with toxicities. Lung Cancer. 2013;82:252–9.

    Article  PubMed  Google Scholar 

  35. Perez CA, Bauer M, Edelstein S, Gillespie BW, Birch R. Impact of tumor control on survival in carcinoma of the lung treated with irradiation. Int J Radiat Oncol Biol Phys. 1986;12:539–47.

    Article  PubMed  CAS  Google Scholar 

  36. Bayman N, Blackhall F, McCloskey P, Taylor P, Faivre-Finn C. How can we optimise concurrent chemoradiotherapy for inoperable stage III non-small cell lung cancer? Lung Cancer. 2014;83:117–25.

    Article  PubMed  Google Scholar 

  37. Cox JD, et al. A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83–11. J Clin Oncol. 1990;8:1543–55.

    PubMed  CAS  Google Scholar 

  38. Kong F-M, Zhao L, Hayman JA. The role of radiation therapy in thoracic tumors. Hematol Oncol Clin North Am. 2006;20:363–400.

    Article  PubMed  Google Scholar 

  39. Bellière A, et al. Feasibility of high-dose three-dimensional radiation therapy in the treatment of localised non-small-cell lung cancer. Cancer Radiother. 2009;13:298–304.

    Article  PubMed  Google Scholar 

  40. Sura S, Yorke E, Jackson A, Rosenzweig KE. High-dose radiotherapy for the treatment of inoperable non-small cell lung cancer. Cancer J. 2007;13:238–42.

    Article  PubMed  Google Scholar 

  41. Kong F-M, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys. 2005;63:324–33.

    Article  PubMed  Google Scholar 

  42. Rosenzweig KE, et al. Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma. Cancer. 2005;103:2118–27.

    Article  PubMed  Google Scholar 

  43. Byhardt RW, et al. A phase I/II study to evaluate accelerated fractionation via concomitant boost for squamous, adeno, and large cell carcinoma of the lung: report of Radiation Therapy Oncology Group 84–07. Int J Radiat Oncol Biol Phys. 1993;26:459–68.

    Article  PubMed  CAS  Google Scholar 

  44. Salama JK, et al. Pulmonary toxicity in Stage III non-small cell lung cancer patients treated with high-dose (74 Gy) 3-dimensional conformal thoracic radiotherapy and concurrent chemotherapy following induction chemotherapy: a secondary analysis of Cancer and Leukemia Group B (CALGB) trial 30105. Int J Radiat Oncol Biol Phys. 2011;81:e269–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hatton M, et al. Induction chemotherapy and continuous hyperfractionated accelerated radiotherapy (chart) for patients with locally advanced inoperable non-small-cell lung cancer: the MRC INCH randomized trial. Int J Radiat Oncol Biol Phys. 2011;81:712–8.

    Article  PubMed  Google Scholar 

  46. Komaki R, et al. Randomized phase II chemotherapy and radiotherapy trial for patients with locally advanced inoperable non-small-cell lung cancer: long-term follow-up of RTOG 92–04. Int J Radiat Oncol Biol Phys. 2002;53:548–57.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenzweig KE, Sura S, Jackson A, Yorke E. Involved-field radiation therapy for inoperable non small-cell lung cancer. J Clin Oncol. 2007;25:5557–61.

    Article  PubMed  Google Scholar 

  48. Yuan S, et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III nonsmall cell lung cancer. Am J Clin Oncol. 2007;30:239–44.

    Article  PubMed  CAS  Google Scholar 

  49. Emami B, et al. The impact of regional nodal radiotherapy (dose/volume) on regional progression and survival in unresectable non-small cell lung cancer: an analysis of RTOG data. Lung Cancer. 2003;41:207–14.

    Article  PubMed  Google Scholar 

  50. De Ruysscher D, Nestle U, Jeraj R, Macmanus M. PET scans in radiotherapy planning of lung cancer. Lung Cancer. 2012;75:141–5.

    Article  PubMed  Google Scholar 

  51. De Ruysscher D, et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol. 2005;77:5–10.

    Article  PubMed  Google Scholar 

  52. MacManus M, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol. 2009;91:85–94.

    Article  PubMed  Google Scholar 

  53. Mac Manus MP, et al. The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: results of a prospective study with mature survival data. Radiother Oncol. 2013;106:292–8.

    Article  PubMed  Google Scholar 

  54. Van Elmpt W, et al. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer. Radiother Oncol. 2013;109:65–70.

    Article  PubMed  Google Scholar 

  55. Geiger GA, et al. Stage migration in planning PET/CT scans in patients due to receive radiotherapy for non-small-cell lung cancer. Clin Lung Cancer. 2013. doi:10.1016/j.cllc.2013.08.004.

    PubMed  Google Scholar 

  56. Zegers CML, et al. Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol. 2013;109:58–64.

    Article  PubMed  Google Scholar 

  57. Karam SD, et al. Dose escalation with stereotactic body radiation therapy boost for locally advanced non small cell lung cancer. Radiat Oncol. 2013;8:179.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Feddock J, et al. Stereotactic body radiation therapy can be used safely to boost residual disease in locally advanced non-small cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2013;85:1325–31.

    Article  PubMed  Google Scholar 

  59. Udrescu C, Mornex F, Tanguy R, Chapet O. ExacTrac Snap Verification: a new tool for ensuring quality control for lung stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:e89–94.

    Article  PubMed  Google Scholar 

  60. Scagliotti GV, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.

    Article  PubMed  CAS  Google Scholar 

  61. Bischof M, Weber K-J, Blatter J, Wannenmacher M, Latz D. Interaction of pemetrexed disodium (ALIMTA, multitargetedantifolate) and irradiation in vitro. Int J Radiat Oncol Biol Phys. 2002;52:1381–8.

    Article  PubMed  CAS  Google Scholar 

  62. Cardenal F, et al. Phase I study of concurrent chemoradiation with pemetrexed and cisplatin followed by consolidation pemetrexed for patients with unresectable stage III non-small cell lung cancer. Lung Cancer. 2011;74:69–74.

    Article  PubMed  Google Scholar 

  63. Mornex F. Pemetrexed (PEM) and Cisplatin (CIS) in concurrent combination with high dose of thoracic Radiation (RT), after induction Chemotherapy (CT), in patients (PTS) with locally advanced Non-Small Cell Lung Cancer (NSCLC): a phase I study. Int J Radiat Oncol Biol Phys. 2010;78(3):S501–2.

    Article  Google Scholar 

  64. Seiwert TY, et al. A phase I study of pemetrexed, carboplatin, and concurrent radiotherapy in patients with locally advanced or metastatic non-small cell lung or esophageal cancer. Clin Cancer Res. 2007;13:515–22.

    Article  PubMed  CAS  Google Scholar 

  65. Choy H, et al. Phase 2 study of pemetrexed plus carboplatin, or pemetrexed plus cisplatin with concurrent radiation therapy followed by pemetrexed consolidation in patients with favorable-prognosis inoperable stage IIIA/B non-small-cell lung cancer. J Thorac Oncol. 2013;8:1308–16.

    Article  PubMed  CAS  Google Scholar 

  66. Govindan R, et al. Randomized phase II study of pemetrexed, carboplatin, and thoracic radiation with or without cetuximab in patients with locally advanced unresectable non-small-cell lung cancer: Cancer and Leukemia Group B trial 30407. J Clin Oncol. 2011;29:3120–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Vokes EE, Senan S, Treat JA, Iscoe NA. PROCLAIM: a phase III study of pemetrexed, cisplatin, and radiation therapy followed by consolidation pemetrexed versus etoposide, cisplatin, and radiation therapy followed by consolidation cytotoxic chemotherapy of choice in locally advanced stage III non-small-cell lung cancer of other than predominantly squamous cell histology. Clin Lung Cancer. 2009;10:193–8.

    Article  PubMed  CAS  Google Scholar 

  68. Tredaniel J, et al. A phase II study of cetuximab, pemetrexed, cisplatin, and concurrent radiotherapy in patients with locally advanced, unresectable, stage III, non squamous, non-small cell lung cancer (NSCLC). Rev Mal Respir. 2011;28:51–7.

    Article  PubMed  CAS  Google Scholar 

  69. Pirker R, et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet. 2009;373:1525–31.

    Article  PubMed  CAS  Google Scholar 

  70. Mak RH, et al. Outcomes after combined modality therapy for EGFR-mutant and wild-type locally advanced NSCLC. Oncologist. 2011;16:886–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Chinnaiyan P, et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res. 2005;65:3328–35.

    PubMed  CAS  Google Scholar 

  72. Choong NW, et al. Phase I trial of erlotinib-based multimodality therapy for inoperable stage III non-small cell lung cancer. J Thorac Oncol. 2008;3:1003–11.

    Article  PubMed  Google Scholar 

  73. Rothschild S, et al. Gefitinib in combination with irradiation with or without cisplatin in patients with inoperable stage III non-small cell lung cancer: a phase I trial. Int J Radiat Oncol Biol Phys. 2011;80:126–32.

    Article  PubMed  CAS  Google Scholar 

  74. Kelly K, et al. Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. J Clin Oncol. 2008;26:2450–6.

    Article  PubMed  CAS  Google Scholar 

  75. Komaki R, et al. Phase II trial of erlotinib and radiotherapy following chemoradiotherapy for patients with stage III non-small cell lung cancer. ASCO Meet abstract. 2011. 29:7020.

    Google Scholar 

  76. Ready N, et al. Chemoradiotherapy and gefitinib in stage III non-small cell lung cancer with epidermal growth factor receptor and KRAS mutation analysis: cancer and leukemia group B (CALEB) 30106, a CALGB-stratified phase II trial. J Thorac Oncol. 2010;5:1382–90.

    Article  PubMed  Google Scholar 

  77. Stinchcombe TE, et al. Induction chemotherapy with carboplatin, irinotecan, and paclitaxel followed by high dose three-dimension conformal thoracic radiotherapy (74 Gy) with concurrent carboplatin, paclitaxel, and gefitinib in unresectable stage IIIA and stage IIIB non-small cell lung cancer. J Thorac Oncol. 2008;3:250–7.

    Article  PubMed  Google Scholar 

  78. Goss GD, et al. Gefitinib versus placebo in completely resected non-small-cell lung cancer: results of the NCIC CTG BR19 study. J Clin Oncol. 2013;31:3320–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Lynch TJ, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  PubMed  CAS  Google Scholar 

  80. Maemondo M, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

    Article  PubMed  CAS  Google Scholar 

  81. Mitsudomi T, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121–8.

    Article  PubMed  CAS  Google Scholar 

  82. Zhou C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–42.

    Article  PubMed  CAS  Google Scholar 

  83. Rosell R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13:239–46.

    Article  PubMed  CAS  Google Scholar 

  84. Yang JC-H, et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol. 2012;13:539–48.

    Article  PubMed  CAS  Google Scholar 

  85. Sequist LV, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:3327–34.

    Article  PubMed  CAS  Google Scholar 

  86. Wu Y-L, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15:213–22.

    Article  PubMed  CAS  Google Scholar 

  87. Shaw AT, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    Article  PubMed  CAS  Google Scholar 

  88. Kwak EL, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Gan GN, et al. Stereotactic radiation therapy can safely and durably control sites of extra-central nervous system oligoprogressive disease in anaplastic lymphoma kinase-positive lung cancer patients receiving crizotinib. Int J Radiat Oncol Biol Phys. 2014. doi:10.1016/j.ijrobp.2013.11.010.

    PubMed  PubMed Central  Google Scholar 

  90. Weickhardt AJ, et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol. 2012;7:1807–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Sandler A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  PubMed  CAS  Google Scholar 

  92. Reck M, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27:1227–34.

    Article  PubMed  CAS  Google Scholar 

  93. Spigel DR, et al. Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol. 2010;28:43–8.

    Article  PubMed  CAS  Google Scholar 

  94. Stinchcombe T, et al. Phase I/II trial of bevacizumab (B) and erlotinib (E) with induction (IND) and concurrent (CON) carboplatin (Cb)/paclitaxel (P) and 74 Gy of thoracic conformal radiotherapy (TCRT) in stage III non-small cell lung cancer (NSCLC). ASCO Meet Abstr. 2011;29:7016.

    Google Scholar 

  95. Hoang T, et al. Randomized phase III study of thoracic radiation in combination with paclitaxel and carboplatin with or without thalidomide in patients with stage III non-small-cell lung cancer: the ECOG 3598 study. J Clin Oncol. 2012;30:616–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Lu C, et al. Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. J Natl Cancer Inst. 2010;102:859–65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Choy H, et al. Phase II multicenter study of induction chemotherapy followed by concurrent efaproxiral (RSR13) and thoracic radiotherapy for patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23:5918–28.

    Article  PubMed  CAS  Google Scholar 

  98. Butts C, et al. A multi-centre phase IIB randomized controlled study of BLP25 liposome vaccine (L-BLP25 or Stimuvax) for active specific immunotherapy of non-small cell lung cancer (NSCLC): updated survival analysis: B1-01. J Thorac Oncol. 2007;2:S332–3.

    Article  Google Scholar 

  99. Brunsvig PF, et al. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res. 2011;17:6847–57.

    Article  PubMed  CAS  Google Scholar 

  100. Lopez Guerra JL, et al. Changes in pulmonary function after three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, or proton beam therapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;83:e537–43.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sejpal S, et al. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer. 2011;117:3004–13.

    Article  PubMed  Google Scholar 

  102. Park K, Ahn YC, Ahn JS, et al. A multinational phase III randomized trial with or without consolidation chemotherapy using docetaxel and cisplatin after concurrent chemoradiation in inoperable stage III non-small cell lung cancer. J Clin Oncol 32:5s, 2014 (suppl; abstr 7500).

    Google Scholar 

  103. Huber RM, Engel-Riedel W, Kollmeier J, et al. GILT study: Oral vinorelbine (NVBo) and cisplatin (P) with concomitant radiotherapy (RT) followed by either consolidation (C) with NVBo plus P plus best supportive care (BSC) or BSC alone in stage (st) III non-small cell lung cancer (NSCLC): Final results of a phase (ph) III study. J Clin Oncol 30, 2012 (suppl; abstr 7001).

    Google Scholar 

  104. Bradley JD, Paulus R, Komaki R, et al. Randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy ± cetuximab for stage IIIA/IIIB non-small cell lung cancer: Preliminary findings on radiation dose in RTOG 0617. Abstract LBA2. 53rd ASTRO Annual Meeting, 2011.

    Google Scholar 

  105. Bradley JD, Paulus R, Komaki R, et al. A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617. J Clin Oncol 31, 2013 (suppl; abstr 7501).

    Google Scholar 

  106. Vokes E, Wang L, Vansteenkiste J, et al. Preliminary Safety and Treatment Delivery Data During Concurrent Phase of Chemoradiation Therapy of the PROCLAIM Trial: A Phase 3 Trial of Pemetrexed, Cisplatin, and Radiotherapy Followed by Consolidation Pemetrexed Versus Etoposide, Cisplatin, and Radiotherapy Followed by Consolidation Cytotoxic Chemotherapy of Choice in Patients With Stage III Nonsquamous Cell Lung Cancer. J Thor Oncol 8, 2013 ( suppl 2; abstr P1.09–009).

    Google Scholar 

  107. Mok T, Kim DW, Wu YL, et al. First-line crizotinib versus pemetrexed–cisplatin or pemetrexed–carboplatin in patients (pts) with advanced ALK-positive non-squamous non-small cell lung cancer (NSCLC): results of a phase III study (PROFILE 1014). J Clin Oncol 32:5s, 2014 (suppl; abstr 8002).

    Google Scholar 

  108. Butts CA, Socinski MA, Mitchell P, et al. START: A phase III study of L-BLP25 cancer immunotherapy for unresectable stage III non-small cell lung cancer. J Clin Oncol 31, 2013 (suppl; abstr 7500).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francoise Mornex MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thariat, J., Lapierre, A., Früh, M., Mornex, F. (2015). Advances in Radiotherapy for Locally Advanced NSCLC. In: Peters, S., Besse, B. (eds) New Therapeutic Strategies in Lung Cancers. Springer, Cham. https://doi.org/10.1007/978-3-319-06062-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06062-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06061-3

  • Online ISBN: 978-3-319-06062-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics