Skip to main content

Treatment Strategies for KRAS Mutated Non-small Cell Lung Cancer

  • Chapter
  • First Online:
Book cover New Therapeutic Strategies in Lung Cancers

Abstract

RAS mutations, one of the most frequent oncogenes in non-small cell lung cancer (NSCLC), occur in 15–30 % of cases. KRAS mutations are more frequent in adenocarcinoma, patients of Caucasian decent, and smokers and are detected mainly in codons 12 and 13 of exon 2 of the KRAS gene.

The prognostic role of KRAS is still debated. Based on two large meta-analyses, KRAS mutation appears to be a weak negative prognostic factor in NSCLC; however, this was not confirmed in a recent pooled analysis from four clinical trials of adjuvant chemotherapy for early stage lung cancer (LACE-BIO study). Furthermore, different types of mutations potentially may have different prognostic effects, but this observation requires further investigation and validation.

There is no strong evidence of a predictive role for KRAS mutation status that would determine patient selection for chemotherapy or molecularly targeted treatments. Two meta-analyses suggest that KRAS mutation may be a negative predictive biomarker for response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in NSCLC, but a definitive association between KRAS status and survival benefit has not been established. Recently the LACE-BIO group showed that chemotherapy could be deleterious in patients with codon 13 mutations, and that patients with tumors harbouring combined KRAS and p53 mutations also have a worse outcome when treated with adjuvant chemotherapy compared with patients with double wild type tumors. These finding require further validation. Thus, at this time, KRAS mutation cannot be used to select NSCLC patients for therapy.

To date, there is no effective targeted therapy available for KRAS mutant NSCLC and targeting KRAS remains experimental. The combination of chemotherapy and MEK inhibitors has shown interesting preliminary results in KRAS mutant NSCLC and is being evaluated in phase III trials. Other drugs also are under study, but results remain premature. The inhibition of KRAS activity likely will require combined, and maybe customized, therapy targeting several activated downstream effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature. 1964;204:1104–5.

    Article  PubMed  CAS  Google Scholar 

  2. Kirsten WH, Mayer LA. Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst. 1967;39:311–35.

    PubMed  CAS  Google Scholar 

  3. Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981;290:261–4.

    Article  PubMed  CAS  Google Scholar 

  4. Rodenhuis S, Slebos RJ. The ras oncogenes in human lung cancer. Am Rev Respir Dis. 1990;142:S27–30.

    Article  PubMed  CAS  Google Scholar 

  5. Shimizu K, Goldfarb M, Perucho M, Wigler M. Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci U S A. 1983;80:383–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Hall A, Marshall CJ, Spurr NK, Weiss RA. Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature. 1983;303:396–400.

    Article  PubMed  CAS  Google Scholar 

  7. Downward J. Targeting RAS, signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    Article  PubMed  CAS  Google Scholar 

  8. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Karachaliou N, Mayo C, Costa C, et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013;14:205–14.

    Article  PubMed  CAS  Google Scholar 

  10. Riely GJ, Kris MG, Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14:5731–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Lee YJ, Kim JH, Kim SK, et al. Lung cancer in never smokers: change of a mindset in the molecular era. Lung Cancer. 2011;72:9–15.

    Article  PubMed  Google Scholar 

  12. Mitsudomi T. The RAS biology. WCLC proceedings 2013: Abstract E10.11.

    Google Scholar 

  13. Yu HA, Sima CS, Shen R, et al. Comparison of the characteristics and clinical course of 677 patients with metastatic lung cancers with mutations in KRAS codon 12 and 13. ASCO proceedings 2013: Abstract 8025.

    Google Scholar 

  14. Barlesi F, Blons H, Beau-Faller M, et al. Biomarkers (BM) France: results of routine EGFR, HER2, KRAS, BRAF, PI3KCA mutations detection and EML4-ALK gene fusion assessment on the first 10,000 non-small cell lung cancer (NSCLC) patients (pts). In ASCO, edition 2013.

    Google Scholar 

  15. Kris MG, Johnson BE, Berry L, et al. Treatment with therapies matched to oncogenic drivers improves survival in patients with lung cancers: results from the Lung Cancer Mutation Consortium (LCMC). In WCLC, edition 2013.

    Google Scholar 

  16. Paesmans M, Sculier JP, Libert P, et al. Prognostic factors for survival in advanced non-small-cell lung cancer: univariate and multivariate analyses including recursive partitioning and amalgamation algorithms in 1,052 patients. The European Lung Cancer Working Party. J Clin Oncol. 1995;13:1221–30.

    PubMed  CAS  Google Scholar 

  17. Slebos RJ, Kibbelaar RE, Dalesio O, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 1990;323:561–5.

    Article  PubMed  CAS  Google Scholar 

  18. Capelletti M, Wang XF, Gu L. Impact of KRAS mutations on adjuvant carboplatin/paclitaxel in surgical resected stage IB NSCLC: CALBG 9633. J Clin Oncol. 2010;28: Abstract 7008.

    Google Scholar 

  19. Scoccianti C, Vesin A, Martel G, et al. Prognostic value of TP53, KRAS and EGFR mutations in nonsmall cell lung cancer: the EUELC cohort. Eur Respir J. 2012;40:177–84.

    Article  PubMed  CAS  Google Scholar 

  20. Ma X, Vataire AL, Sun H. TP53 AND KRAS Mutations as markers of outcome of adjuvant cisplatin-based chemotherapy in completely resected non-small cell lung cancer (NSCLC): the International Adjuvant Lung Cancer Trial (IALT) biological program. Ann Oncol. 2008;19:61.

    Google Scholar 

  21. Schiller JH, Adak S, Feins RH, et al. Lack of prognostic significance of p53 and K-ras mutations in primary resected non-small-cell lung cancer on E4592: a Laboratory Ancillary Study on an Eastern Cooperative Oncology Group Prospective Randomized Trial of Postoperative Adjuvant Therapy. J Clin Oncol. 2001;19:448–57.

    PubMed  CAS  Google Scholar 

  22. Tsao MS, Aviel-Ronen S, Ding K, et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol. 2007;25:5240–7.

    Article  PubMed  Google Scholar 

  23. Mascaux C, Iannino N, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92:131–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Meng D, Yuan M, Li X, et al. Prognostic value of K-RAS mutations in patients with non-small cell lung cancer: a systematic review with meta-analysis. Lung Cancer. 2013;81:1–10.

    Article  PubMed  Google Scholar 

  25. Shepherd FA, Domerg C, Hainaut P, et al. Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol. 2013;31:2173–81.

    Article  PubMed  CAS  Google Scholar 

  26. Mok T, Wu Y, Thongprasert S, et al. Gefitinib vs carboplatin-placlitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.

    Article  PubMed  CAS  Google Scholar 

  27. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.

    Article  PubMed  CAS  Google Scholar 

  28. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–65.

    Article  PubMed  CAS  Google Scholar 

  29. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  PubMed  CAS  Google Scholar 

  30. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23:5900–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu CQ, da Cunha Santos G, Ding K, et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol. 2008;26:4268–75.

    Article  PubMed  CAS  Google Scholar 

  32. Brugger W, Triller N, Blasinska-Morawiec M, et al. Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29:4113–20.

    Article  PubMed  CAS  Google Scholar 

  33. Goss GD, O'Callaghan C, Lorimer I, et al. Gefitinib versus placebo in completely resected non-small-cell lung cancer: results of the NCIC CTG BR19 study. J Clin Oncol. 2013;31:3320–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Lee SM, Khan I, Upadhyay S, et al. First-line erlotinib in patients with advanced non-small-cell lung cancer unsuitable for chemotherapy (TOPICAL): a double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2012;13:1161–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Johnson B, Miller V, Amler LC, et al. Biomarker evaluation in the randomized, double-blind, placebo-controlled, phase IIIb ATLAS trial, comparing bevacizumab (B) therapy with or without erlotinib (E), after completion of chemotherapy with B for the treatment of locally advanced, recurrent, or metastatic non-small cell lung cancer (NSCLC). Eur J Cancer. 2009;7:5.

    Article  Google Scholar 

  36. Sequist LV, von Pawel J, Garmey EG, et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol. 2011;29:3307–15.

    Article  PubMed  CAS  Google Scholar 

  37. Scagliotti G, Novello S, Ramlau R, et al. Results of the phase 3 study: MET inhibitor Tivantinib (ARQ 197) Plus Erlotinib versus Erlotinib plus Placebo in NSCLC. ESMO/ECCO proceedings 2013.

    Google Scholar 

  38. Douillard JY, Shepherd FA, Hirsh V, et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol. 2010;28:744–52.

    Article  PubMed  CAS  Google Scholar 

  39. Garassino MC, Martelli O, Bettini A, et al. A phase III trial comparing erlotinib versus docetaxel as second-line treatment of NSCLC patients with wild-type EGFR. ASCO proceedings 2012.

    Google Scholar 

  40. Johnson BE, Kabbinavar F, Fehrenbacher L, et al. ATLAS: randomized, double-blind, placebo-controlled, phase IIIB trial comparing bevacizumab therapy with or without erlotinib, after completion of chemotherapy, with bevacizumab for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2013;31:3926–34.

    Article  PubMed  CAS  Google Scholar 

  41. Engelman JA, Chen L, Tan X, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14:1351–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Linardou H, Dahabreh IJ, Kanaloupiti D, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9:962–72.

    Article  PubMed  CAS  Google Scholar 

  43. Mao C, Qiu LX, Liao RY, et al. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer. 2010;69:272–8.

    Article  PubMed  Google Scholar 

  44. Metro G, Chiari R, Duranti S, et al. Impact of specific mutant KRAS on clinical outcome of EGFR-TKI-treated advanced non-small cell lung cancer patients with an EGFR wild type genotype. Lung Cancer. 2012;78:81–6.

    Article  PubMed  Google Scholar 

  45. Fiala O, Pesek M, Finek J, et al. The dominant role of G12C over other KRAS mutation types in the negative prediction of efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Genet. 2013;206:26–31.

    Article  PubMed  CAS  Google Scholar 

  46. Khambata-Ford S, Harbison CT, Hart LL, et al. Analysis of potential predictive markers of cetuximab benefit in BMS099, a phase III study of cetuximab and first-line taxane/carboplatin in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:918–27.

    Article  PubMed  CAS  Google Scholar 

  47. O’Byrne KJ, Gatzemeier U, Bondarenko I, et al. Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the phase 3 FLEX study. Lancet Oncol. 2011;12:795–805.

    Article  PubMed  Google Scholar 

  48. Butts CA, Ding K, Seymour L, et al. Randomized phase III trial of vinorelbine plus cisplatin compared with observation in completely resected stage IB and II non-small-cell lung cancer: updated survival analysis of JBR-10. J Clin Oncol. 2010;28:29–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Ihle NT, Byers LA, Kim ES, et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst. 2012;104:228–39.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Garassino MC, Marabese M, Rusconi P, et al. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann Oncol. 2011;22:235–7.

    Article  PubMed  CAS  Google Scholar 

  51. Hainsworth JD, Cebotaru CL, Kanarev V, et al. A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. J Thorac Oncol. 2010;5:1630–6.

    Article  PubMed  Google Scholar 

  52. Janne PA, Shaw AT, Pereira JR, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013;14:38–47.

    Article  PubMed  Google Scholar 

  53. Bennouma J, Leighl NB, Kelly K, et al. Oral MEK1/MEK2 inhibitor trametinib (GSK1120212) in combination with docetaxel in a phase 1/1b trial involving KRAS-mutant and wild-type (WT) advanced non-small cell lung cancer (NSCLC): efficacy and biomarkers results. WCLC proceedings 2013: Abstract 2411.

    Google Scholar 

  54. Riely G, Brahmer JR, Planchard D. A randomized discontinuation phase II trial of ridaforolimus in non-small cell lung cancer (NSCLC) patients with KRAS mutations. J Clin Oncol. 2012;30: Abstract 7531.

    Google Scholar 

  55. Adjei AA, Mauer A, Bruzek L, et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003;21:1760–6.

    Article  PubMed  CAS  Google Scholar 

  56. Eder Jr JP, Ryan DP, Appleman L, et al. Phase I clinical trial of the farnesyltransferase inhibitor BMS-214662 administered as a weekly 24 h continuous intravenous infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2006;58:107–16.

    Article  PubMed  CAS  Google Scholar 

  57. Riely GJ, Johnson ML, Medina C, et al. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. J Thorac Oncol. 2011;6:1435–7.

    Article  PubMed  Google Scholar 

  58. Chandra A, Grecco HE, Pisupati V, et al. The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol. 2012;14:148–58.

    Article  CAS  Google Scholar 

  59. Zimmermann G, Papke B, Ismail S, et al. Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature. 2013;497:638–42.

    Article  PubMed  CAS  Google Scholar 

  60. Gilmartin AG, Bleam MR, Groy A, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res. 2011;17:989–1000.

    Article  PubMed  CAS  Google Scholar 

  61. Blumenschein GR, Smit EF, Planchard D, et al. MEK114653: a randomized, multicenter, phase II study to assess efficacy and safety of trametinib (T) compared with docetaxel (D) in KRAS-mutant advanced non-small cell lung cancer (NSCLC). ASCO proceedings 2013: Abstract 8029.

    Google Scholar 

  62. Kelly K, Mazieres J, Leighl NB, et al. Oral MEK1/MEK2 inhibitor trametinib (GSK1120212) in combination with pemetrexed for KRAS-mutant and wild-type (WT) advanced non-small cell lung cancer (NSCLC): a phase I/IB trial. ASCO proceedings 2012.

    Google Scholar 

  63. Wee S, Jagani Z, Xiang KX, et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 2009;69:4286–93.

    Article  PubMed  CAS  Google Scholar 

  64. Loboda A, Nebozhyn M, Klinghoffer R, et al. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genomics. 2010;3:26.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gridelli C, Maione P, Rossi A. The potential role of mTOR inhibitors in non-small cell lung cancer. Oncologist. 2008;13:139–47.

    Article  PubMed  CAS  Google Scholar 

  66. Soria JC, Shepherd FA, Douillard JY, et al. Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Ann Oncol. 2009;20:1674–81.

    Article  PubMed  Google Scholar 

  67. Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008;26:361–7.

    Article  PubMed  CAS  Google Scholar 

  68. De Raedt T, Walton Z, Yecies JL, et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell. 2011;20:400–13.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Sierra JR, Tsao MS. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3:S21–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Sos ML, Michel K, Zander T, et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009;119:1727–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Acquaviva J, Smith DL, Sang J, et al. Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol Cancer Ther. 2012;11:2633–43.

    Article  PubMed  CAS  Google Scholar 

  74. Socinski MA, Goldman J, El-Hariry I, et al. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res. 2013;19:3068–77.

    Article  PubMed  CAS  Google Scholar 

  75. Fernandez V, Hartmann E, Ott G, et al. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J Clin Oncol. 2005;23:6364–9.

    Article  PubMed  CAS  Google Scholar 

  76. Puyol M, Martin A, Dubus P, et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell. 2010;18:63–73.

    Article  PubMed  CAS  Google Scholar 

  77. Shapiro GI, Rosen LS, Tolcher AW, et al. A first-in-human phase 1 study of the CDK4/6 inhibitor, LY2835219, for patients with advanced cancer. ASCO proceedings 2013.

    Google Scholar 

  78. Ostrem JM, Peters U, Sos ML, et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503:548–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances A. Shepherd MD, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mascaux, C., Shepherd, F.A. (2015). Treatment Strategies for KRAS Mutated Non-small Cell Lung Cancer. In: Peters, S., Besse, B. (eds) New Therapeutic Strategies in Lung Cancers. Springer, Cham. https://doi.org/10.1007/978-3-319-06062-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06062-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06061-3

  • Online ISBN: 978-3-319-06062-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics