Skip to main content

Self-Assembly: The Primary Source of Coherence

  • Chapter
  • First Online:
Molecular Origins of Brain and Body Geometry
  • 752 Accesses

Abstract

The most significant aspect of self-assembly from the point of view of molecular and chromosomal evolution is that the ordered aggregation of molecules, macromolecules and supramolecular systems takes place independently of external information. Enzymes, ribosomes and viruses can self-assemble due to the properties inherent to their structures. Cell membranes also possess this capacity. Phospholipid molecules contain within themselves the necessary information to assemble into bilayer systems in the absence of other sources. The amino acid sequences which build polypeptide chains also carry inherent information (Stryer 1981; Golan et al. 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen H, Stenmark H (2011) Growth signaling from inside. Science 334:611–612

    Article  PubMed  CAS  Google Scholar 

  • Bonner JT (1947) Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. J Exp Zool 106:1–26

    Article  PubMed  CAS  Google Scholar 

  • Bonner JT (1959) The cellular slime molds. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Butler PIG (1999) Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos Trans R Soc Lond B Biol Sci 354:537–550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chan Y–HM, Marshall WF (2012) How cells know the size of their organelles. Science 337:1186–1189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Damasceno PF et al (2012) Predictive self-assembly of polyhedra into complex structures. Science 337:453–457

    Article  PubMed  CAS  Google Scholar 

  • de la Roche MA et al (2002) Signaling pathways regulating Dictyostelium myosin II. J Muscle Res Cell Motil 23:703–718

    Article  PubMed  Google Scholar 

  • Dubertret L et al (1987) Les peaux artificielles vivantes. La Recherche 18:149–155

    Google Scholar 

  • Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel-Conrat H (1962) Design and function at the threshold of life: the viruses. Academic, New York, NY

    Google Scholar 

  • Galtsoff PS (1923) The amoeboid movement of dissociated sponge cells. Biol Bull 45:153–161

    Article  Google Scholar 

  • Gerisch G (1968) Cell aggregation and differentiation in Dictyostelium. In: Moscona AA, Monroy A (eds) Current topics in developmental biology. Academic, New York, NY

    Google Scholar 

  • Golan DE et al (eds) (2005) Principles of pharmacology. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  • Gregg JH, Yu NY (1975) Dictyostelium aggregate-less mutant plasma membranes. Exp Cell Res 96:283–286

    Article  PubMed  CAS  Google Scholar 

  • Hargittai I, Hargittai M (1995) Symmetry through the eyes of a chemist. Plenum, New York, NY

    Google Scholar 

  • Huang W-C et al (2012) Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc 134:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Kegel WK, van der Schoot P (2006) Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys J 91:1501–1512

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuczmarski ER, Spudich JA (1980) Phosphorylation of myosin heavy chain Dictyostelium regulates self-assembly. In: 20th annual meeting American social cell biology. J Cell Biol 87:227A

    Google Scholar 

  • Langille MR et al (2012) Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337:954–957

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1975) Biochemistry. Worth Publication, New York, NY

    Google Scholar 

  • Liljas A (2004) Structural aspects of protein synthesis. World Scientific Co, Singapore

    Book  Google Scholar 

  • Lima-de-Faria A (1988) Evolution without selection: form and function by autoevolution. Elsevier, Amsterdam

    Google Scholar 

  • Macfarlane RJ et al (2011) Nanoparticle superlattice engineering with DNA. Science 334:204–208

    Article  PubMed  CAS  Google Scholar 

  • Mackay AL (1987) Quasicrystals and amorphous materials. J Non-Cryst Solids 97–98:55–62

    Article  Google Scholar 

  • McGrath KP, Butler MM (1997) Self-assembling protein systems: a model for materials science. In: McGrath K, Kaplan D (eds) Protein-based materials, Bioengineering materials. Birkhäuser, Boston, pp 251–279

    Chapter  Google Scholar 

  • Müller WEG et al (1976) Species-specific aggregation factor in sponges IV. Exp Cell Res 98:31–40

    Article  PubMed  Google Scholar 

  • Nomura M (1973) Assembly of bacterial ribosomes. Science 179:864–873

    Article  PubMed  CAS  Google Scholar 

  • Ohno S et al (1978) Testicular cells lysostripped of H-Y antigen organize ovarian follicle-like aggregates. Cytogenet Cell Genet 20:351–364

    Article  PubMed  CAS  Google Scholar 

  • Pugsley AP (1989) Protein targeting. Academic, New York, NY

    Google Scholar 

  • Rizzoti K, Lovell-Badge R (2011) Organ recital in a dish. Nature 480:44–45

    Article  PubMed  CAS  Google Scholar 

  • Röhl R, Nierhaus KN (1982) Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proc Natl Acad Sci USA 79:729–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Samant RS, Workman P (2012) Choose your protein partners. Nature 490:351–352

    Article  PubMed  CAS  Google Scholar 

  • Seifert AW et al (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–566

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shechtman D et al (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953

    Article  CAS  Google Scholar 

  • Steinhardt PJ (1990) Quasicrystals: a new form of matter. Endeav New Ser 14:112–116

    Article  Google Scholar 

  • Stryer L (1981) Biochemistry. W.H. Freeman and Company, New York, NY

    Google Scholar 

  • Suga H et al (2011) Self-formation of functional adeno-hypophysis in three-dimensional culture. Nature 480:57–63

    Article  PubMed  CAS  Google Scholar 

  • Taipale M et al (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Travesset A (2011) Self-assembly enters the design era. Science 334:183–184

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Fernandez-Martinez A (2012) Order from disorder. Science 337:812–813

    Article  PubMed  CAS  Google Scholar 

  • Wang L et al (2012) Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337:825–828

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2012) Colloids with valence and specific directional bonding. Nature 491:51–55

    Article  PubMed  CAS  Google Scholar 

  • Xiao C et al (2012) Dodecagonal tiling in mesoporous silica. Nature 487:349–353

    Article  PubMed  CAS  Google Scholar 

  • Yang P (2012) Crystal cuts on the nanoscale. Nature 482:41–42

    Article  PubMed  CAS  Google Scholar 

  • Zenzes MT et al (1978) Studies on the function of H-Y antigen: dissociation and reorganization experiments on rat gonadal tissue. Cytogenet Cell Genet 20:365–372

    Article  PubMed  CAS  Google Scholar 

  • Zoncu R et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vascuolar H + -ATPase. Science 334:678–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Sources of Figures

Sources of Figures

Fig. 17.1 (1) Wang, D. and Fernandez-Martinez, A. 2012. Order from disorder. Science 337: 812–813 (Fig. page 812). (2) Langille, M.R. et al. 2012. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337: 954–957 (Fig. 1, page 955).

Fig. 17.2 (1) Damasceno, P.F. et al. 2012. Predictive self-assembly of polyhedra into complex structures. Science 337: 453–457 (Fig. 1, page 454). (2) Travesset, A. 2011. Self-assembly enters the design era. Science 334: 183–184 (Fig. page 183).

Fig. 17.3 (1) Abrahamsen, H. and Stenmark, H. 2011. Growth signaling from inside. Science 334: 611–612 (Fig. page 611).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lima-de-Faria, A. (2014). Self-Assembly: The Primary Source of Coherence. In: Molecular Origins of Brain and Body Geometry. Springer, Cham. https://doi.org/10.1007/978-3-319-06056-9_17

Download citation

Publish with us

Policies and ethics