Skip to main content

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

Abstract

We present a method for re-meshing surfaces in order to follow the intrinsic anisotropy of the surfaces. In particular, we use the information related to the normals to the surfaces, and embed the surfaces into a higher dimensional space (here we embed the surfaces in a six-dimensional space). This allows us to settle an isotropic mesh optimization problem in this embedded space: starting from an initial mesh of a surface, we optimize the mesh by improving the mesh quality measured in the embedded space. The mesh is optimized by properly combining common local mesh operations, i.e., edge flipping, edge contraction, vertex smoothing, and vertex insertion. All operations are applied directly on the three-dimensional surface mesh and the resulting mesh is curvature adapted. This new method improves the approach proposed by Lévy and Bonneel (Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Proceedings of the 21st International Meshing Roundtable, pp. 349–366. Springer, New York, 2013), by allowing to preserve sharp features. The reliability and robustness of the proposed re-meshing technique is shown via a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)

    Article  Google Scholar 

  2. Alliez, P., De Verdire, E., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: Shape Modeling International, 2003, pp. 49–58. IEEE (2003)

    Google Scholar 

  3. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of surfaces. In: Shape Analysis and Structuring, pp. 53–82. Springer, New York (2008)

    Google Scholar 

  4. Aurenhammer, F.: Voronoi diagrams a survey of a fundamental geometric data structure. ACM Comp. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  5. Boissonnat, J.D., Wormser, C., Yvinec, M.: Locally uniform anisotropic meshing. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational geometry, pp. 270–277. ACM, New York (2008)

    Google Scholar 

  6. Boissonnat, J.D., Shi, K.-L., Tournois, J., Yvinec, M.: Anisotropic Delaunay meshes of surfaces. ACM Trans. Graph. p. 10. http://doi.acm.org/10.1145/2721895, 2012

  7. Bossen, F.J., Heckbert, P.S.: A pliant method for anisotropic mesh generation. In: 5th International Meshing Roundtable, pp. 63–74. Citeseer (1996)

    Google Scholar 

  8. Cañas, G.D., Gortler, S.J.: Surface remeshing in arbitrary codimensions. Vis. Comput. 22(9–11), 885–895 (2006)

    Article  Google Scholar 

  9. Canas, G.D., Gortler, S.J.: Shape operator metric for surface normal approximation. In: Proceedings of the 18th International Meshing Roundtable, pp. 447–461. Springer, New York (2009)

    Google Scholar 

  10.  Chen, L., Sun, P., Xu, J.: Optimal anisotropic meshes for minimizing interpolation errors in L p-norm. Math. Comput. 76(257), 179–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cheng, S.W., Dey, T.K., Ramos, E.A., Wenger, R.: Anisotropic surface meshing. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 202–211. ACM, New York (2006)

    Google Scholar 

  12. Cheng, S.W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm for a large class of domains. In: Proceedings of the 16th International Meshing Roundtable, pp. 477–494. Springer, New York (2008)

    Google Scholar 

  13. de Cougny, H.L., Shephard, M.S.: Surface meshing using vertex insertion. In: Proceedings of the 5th International Meshing Roundtable, pp. 243–256. Citeseer (1996)

    Google Scholar 

  14.  Dobrzynski, C., Frey, P.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th International Meshing Roundtable, pp. 177–194. Springer, New York (2008)

    Google Scholar 

  15.  Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26(3), 737–761 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16.  Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17.  Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  18. Edelsbrunner, H., Shah, N.R.: Triangulating topological spaces. Int. J. Comput. Geo. Appl. 7(04), 365–378 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19.  El-Hamalawi, A.: Mesh generation—application to finite elements. Eng. Constr. Archit. Manag. 8(3), 234–235 (2001)

    Article  Google Scholar 

  20. Field, D.A.: Laplacian smoothing and Delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)

    Article  MATH  Google Scholar 

  21. Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194(48), 5068–5082 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Frey, P.J., Borouchaki, H.: Geometric surface mesh optimization. Comput. Vis. Sci. 1(3), 113–121 (1998)

    Article  MATH  Google Scholar 

  24. Heckbert, P.S., Garland, M.: Optimal triangulation and quadric-based surface simplification. Comput. Geol. 14(1), 49–65 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108. ACM, New York (1996)

    Google Scholar 

  26. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 19–26. ACM, New York (1993)

    Google Scholar 

  27. Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204(2), 633–665 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jiao, X., Colombi, A., Ni, X., Hart, J.: Anisotropic mesh adaptation for evolving triangulated surfaces. Eng. Comput. 26(4), 363–376 (2010)

    Article  Google Scholar 

  29. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)

    Article  MATH  Google Scholar 

  30. Kovacs, D., Myles, A., Zorin, D.: Anisotropic quadrangulation. Comput. Aid. Geom. Des. 28(8), 449–462 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31.  Labelle, F., Shewchuk, J.R.: Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 191–200. ACM, New York (2003)

    Google Scholar 

  32. Lai, Y.K., Zhou, Q.-Y., Hu, S.-M., Wallner, J., Pottmann, D., et al.: Robust feature classification and editing. IEEE Trans. Vis. Comput. Graph. 13(1), 34–45 (2007)

    Article  Google Scholar 

  33. Lawson, C.L.: Software for C 1 surface interpolation. In: Mathematical Software III, pp. 164–191. Academic, New York (1977)

    Google Scholar 

  34. Lévy, B., Bonneel, N.: Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Proceedings of the 21st International Meshing Roundtable, pp. 349–366. Springer, New York (2013)

    Google Scholar 

  35. Lévy, B., Liu, Y.: l p centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29(4), 119 (2010)

    Google Scholar 

  36. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang, C.: On centroidal Voronoi tessellation energy smoothness and fast computation. ACM Trans. Graph. 28(4), 101 (2009)

    Article  Google Scholar 

  37. Loseille, A., Alauzet, F.: Continuous mesh framework part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49(1), 38–60 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Loseille, A., Alauzet, F.: Continuous mesh framework part II: validations and applications. SIAM J. Numer. Anal. 49(1), 61–86 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Mirebeau, J.M.: Optimally adapted meshes for finite elements of arbitrary order and W 1, p norms. Numer. Math. 120, 271–305 (2012)

    Google Scholar 

  40. Owen, S.J., White, D.R., Tautges, T.J.: Facet-based surfaces for 3d mesh generation. In: IMR, pp. 297–311 (2002)

    Google Scholar 

  41. Pottmann, H., T. Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The Isophotic Metric and its Application to Feature Sensitive Morphology on Surfaces. Springer, New York (2004)

    Google Scholar 

  42. Rippa, S.: Long and thin triangles can be good for linear interpolation. SIAM J. Numer. Anal. 29(1), 257–270 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  43. Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: Proceedings of 11th International Meshing Roundtable, pp. 115–126 (2002)

    Google Scholar 

  44. Zhong, Z., Guo, X., Wang, W., Lévy, B., Sun, F., Liu, Y., Mao, W.: Particle-based anisotropic surface meshing. ACM Trans. Graph. 32(4), 99 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Dassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dassi, F., Si, H. (2015). A Curvature-Adapted Anisotropic Surface Re-meshing Method. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_2

Download citation

Publish with us

Policies and ethics