Skip to main content

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

  • 1184 Accesses

Abstract

We propose a framework for performing anisotropic mesh deformations. Our goal is to produce high quality meshes with no inverted elements on domains which undergo large deformations. To the greatest extent possible, the meshes should have similar element shape; however, topological changes are performed as necessary in order to improve mesh quality. Our framework is based upon the previous work of two of the authors and their collaborators (Kim et al., Int. J. Numer. Methods Eng. 94(1):20–42, 2013; Kim et al., Computer and Mathematics with Applications, Submitted, November 2014) and consists of four steps. The first step is to perform anisotropic finite element-based mesh warping to estimate the interior vertex positions based upon an appropriate choice of the PDE coefficients. The second step is to perform multiobjective mesh optimization in order to eliminate inverted elements and improve element shape. Edge swaps are then performed to further improve the mesh quality. A final mesh smoothing pass is then performed. Our numerical results show that our framework can be used to generate high quality meshes with no inverted elements for very large deformations. In particular, the addition of topological changes to our hybrid mesh deformation algorithm (Kim et al., Computer and Mathematics with Applications, Submitted, November 2014) proved to be an extremely efficient way of improving the mesh quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helenbrook, B.T.: Mesh deformation using the biharmonic operator. Int. J. Numer. Methods Eng. 56, 1007–1021 (2003)

    Article  MATH  Google Scholar 

  2. Villone, M.M., Hulsen, M.A., Anderson, P.D., Maffettone, P.L.: Simulations of deformable systems in fluids under shear flow using an arbitrary Lagrangian Eulerian technique. Comput. Fluids 90, 88–100 (2014)

    Article  MathSciNet  Google Scholar 

  3. Pan, F., Kubby, J., Chen, J.: Numerical simulation of fluid-structure interaction in a MEMS diaphragm drop ejector. J. Micromech. Microeng. 12, 70–76 (2002)

    Article  Google Scholar 

  4. Crosetto, P., Reymond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N., Quateroni, A.: Fluid-structure interaction simulation of aortic blood flow. Comput. Fluids 43(1), 46–57 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Armero, F., Love, E.: An arbitrary Lagrangian-Eulerian finite element method for finite strain plasticity. Int. J. Numer. Meth. Eng. 57, 471–508 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kaczmarczyk, L., Nezhad, M.M., Pearce, C.: Three-dimensional brittle fracture: configurational force-driven crack propagation. Int. J. Numer. Methods Eng. 97, 531–550 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bah, M.T., Nair, P.B., Browne, M.: Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements. Med. Eng. Phys. 31, 1235–1243 (2009)

    Article  Google Scholar 

  8. Baldwin, M.A., Langenderfer, J.E., Rullkoetter, P.J., Laz, P.J.: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput. Methods Programs Biomed. 97, 232–240 (2010)

    Article  Google Scholar 

  9. Park, J., Shontz, S.M., Drapaca, C.S.: A combined level set/mesh warping algorithm for tracking brain and cerebrospinal fluid evolution in hydrocephalic patients. In: Image-Based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics, vol. 3, pp. 107–141. Springer, Amsterdam (2013)

    Google Scholar 

  10. Park, J., Shontz, S.M., Drapaca, C.S.: Automatic boundary evolution tracking via a combined level set method and mesh warping technique: Application to hydrocephalus. In: Proc. of the MICCAI Workshop on Mesh Processing in Medical Image Analysis, pp. 122–133 (2012)

    Google Scholar 

  11. Sastry, S.P., Kim, J., Shontz, S.M., Craven, B.A., Lynch, F.C., Manning, K.B., Panitanarak, T.: Patient-specific model generation and simulation for pre-operative surgical guidance for pulmonary embolism treatment. In: Image-Based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics, vol. 3, pp. 223–301. Springer, Amsterdam (2013)

    Google Scholar 

  12. Lee, A.W.F., Dobkin, D., Sweldens, W., Schroder, P.: Multiresolution mesh morphing. In: Proc. of the 26th SIGGRAPH Conference, pp. 343–350 (1999)

    Google Scholar 

  13. Klingner, B.: Tetrahedral Mesh Improvement. Ph.D. Thesis, University of California at Berkeley (2009)

    Google Scholar 

  14. Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh morphing techniques for 3D shape optimization. In: Proc. of the 2011 International Meshing Roundtable, pp. 293–312 (2011)

    Google Scholar 

  15. Baker, T.J.: Mesh movement and metamorphosis. In: Proc. of the 10th International Meshing Roundtable, pp. 387–396 (2001)

    Google Scholar 

  16. Shontz, S.M., Vavasis, S.A.: Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes. BIT Numer. Math. 50, 863–884 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shontz, S.M., Vavasis, S.A.: A mesh warping algorithm based on weighted Laplacian smoothing. In: Proc. of the 12th International Meshing Roundtable, pp. 147–158 (2003)

    Google Scholar 

  18. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure interactions with large displacements. Trans. ASME 70, 58–63 (2003)

    Article  MATH  Google Scholar 

  19. Stein, K., Tezduyar, T., Benney, R.: Automatic mesh update with the solid-extension mesh moving technique. Comput. Methods Appl. Mech. Eng. 193, 2019–2031 (2004)

    Article  MATH  Google Scholar 

  20. Shontz, S.M., Vavasis, S.A.: A robust solution procedure for hyperelastic solids with large boundary deformation. Eng. Comput. 28, 135–147 (2012)

    Article  Google Scholar 

  21. Luke, E., Collins, E., Blades, E.: A fast mesh deformation method using explicit interpolation. J. Comput. Phys. 231, 586–601 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Antaki, J., Blelloch, G., Ghattas, O., Malcevic, I., Miller, G., Walkington, N.: A parallel dynamic mesh Lagrangian method for simulation of flows with dynamic interfaces. In: Proc. of the 2000 Supercomputing Conference, p. 26 (2000)

    Google Scholar 

  23. Cardoze, D., Cunha, A., Miller, G., Phillips, T., Walkington, N.: A Bézier-based approach to unstructured moving meshes. In: Proc. of the 20th ACM Symposium on Computational Geometry (2004)

    Google Scholar 

  24. Cardoze, D., Miller, G., Olah, M., Phillips, T.: A Bézier-based moving mesh framework for simulation with elastic membranes. In: Proc. of the 13th International Meshing Roundtable, pp. 71–80. Sandia National Laboratories, Williamsburg (2004)

    Google Scholar 

  25. Alauzet, F., Marcum, D.: A closed advancing-layer method with changing topology mesh movement for viscous mesh generation. In: Proc. of the 22nd International Meshing Roundtable, pp. 241–262 (2013)

    Google Scholar 

  26. Knupp, P.: Updating meshes on deforming domains: an application of the target-matrix paradigm. Commun. Numer. Methods Eng. 24, 467–476 (2007)

    Article  MathSciNet  Google Scholar 

  27. Yang, Z., Mavripilis, D.J.: Mesh deformation strategy optimized by the adjoint method on unstructured meshes. AIAA J. 45(12), 2885–2896 (2007)

    Article  Google Scholar 

  28. Kim, J., Miller, B.J., Shontz, S.M.: A hybrid mesh deformation algorithm using anisotropy and multiobjective mesh optimization. Computer and Mathematics with Applications, Submitted (November 2014)

    Google Scholar 

  29. Kim, J., Panitanarak, T., Shontz, S.M.: A multiobjective framework for mesh optimization. Int. J. Numer. Methods Eng. 94(1), 20–42 (2013)

    Article  MathSciNet  Google Scholar 

  30. Jiao, X., Colombi, A., Ni, X., Hart, J.C.: Anisotropic mesh adaptation for evolving triangulated surfaces. In: Proc. of the 15th International Meshing Roundtable, pp. 173–190 (2006)

    Google Scholar 

  31. McLaurin, D., Marcum, D., Remotigue, M., Blades, E.: Algorithms and Methods for Discrete Surface Repair. Ph.D. Thesis, Mississippi State University (2010)

    Google Scholar 

  32. McLaurin, D.: Discrete Mesh Intersection Tutorial. http://www.simcenter.msstate.edu/docs/solidmesh/discretegridintersection.html (2011)

  33. Brewer, M., Freitag Diachin, L., Knupp, P., Leurent, T., Melander, D.: The mesquite mesh quality improvement toolkit. In: Proc. of the 12th International Meshing Roundtable, Sandia National Laboratories, pp. 239–250 (2003)

    Google Scholar 

  34. Zaharescu, A., Boyer, E., Horaud, R.: Topology-adaptive mesh deformation for surface evolution, morphing, and multiview reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 823–837 (2011)

    Article  Google Scholar 

  35. Shewchuk, J.R.: Two discrete optimization algorithms for the topological improvement of tetrahedral meshes, Unpublished (2002)

    Google Scholar 

  36. Sieger, D., Menzel, S., Botsch, M.: High quality mesh morphing using triharmonic radial basis functions. In: Proc. of the 21st International Meshing Roundtable, pp. 1–15 (2013)

    Google Scholar 

Download references

Acknowledgements

The work of the third author is supported in part by NSF grant CAREER Award ACI-1330054 (formerly OCI-1054459). The authors wish to thank the anonymous referee for his/her careful reading of the paper and for the helpful suggestions which strengthened it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. Shontz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, J., McLaurin, D., Shontz, S.M. (2015). A 2D Topology-Adaptive Mesh Deformation Framework for Mesh Warping. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_13

Download citation

Publish with us

Policies and ethics