Skip to main content

Anisotropic Mesh and Time Step Adaptivity for Solute Transport Modeling in Porous Media

  • Chapter

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

Abstract

We assess the impact of space-time mesh adaptivity on the modeling of solute transport in porous media. This approach allows an automatic selection of both the spatial mesh and the time step on the basis of a suitable recovery-based error estimator. In particular, we deal with an anisotropic control of the spatial mesh. The solver coupled with the adaptive module deals with an advection-dispersion equation to model the transport of dissolved species, which are assumed to be convected by a Darcy flow field. The whole solution-adaptation procedure is assessed through two-dimensional numerical tests. A numerical convergence analysis of the spatial mesh adaptivity is first performed by considering a test-case with analytical solution. Then, we validate the space-time adaptive procedure by reproducing a set of experimental observations associated with solute transport in a homogeneous sand pack. The accuracy and the efficiency of the methodology are discussed and numerical results are compared with those associated with fixed uniform space-time discretizations. This assessment shows that the proposed approach is robust and reliable. In particular, it allows us to obtain a significant improvement of the simulation quality of the early solute arrivals times at the outlet of the medium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alauzet, F., Mehrenberger, M.: P1-conservative solution interpolation on unstructured triangular meshes. Int. J. Numer. Methods Eng. 84(13), 1552–1588 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andričević, R., Cvetkovic, V.: Evaluation of risk from contaminants migrating by groundwater. Water Resour. Res. 32(3), 611–621 (1996)

    Article  Google Scholar 

  3. Bear, J., Cheng, A.H.-D.: Modeling Groundwater Flow and Contaminant Transport. Springer Dordrech (2010)

    Google Scholar 

  4. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10, 1–102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouillard, P., Allard, J.-F., Warzée, G.: Superconvergent patch recovery technique for the finite element method in acoustic. Commun. Numer. Methods Eng. 12(9), 581–594 (1996)

    Article  MATH  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cai, Z., Zhang, S.: Recovery-based error estimators for interface problems: mixed and nonconforming finite elements. SIAM J. Numer. Anal. 48(1), 30–52 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cao, J., Kitanidis, P.K.: Adaptive-grid simulation of groundwater flow in heterogeneous aquifers. Adv. Water Resour. 22(7), 681–696 (1999)

    Article  Google Scholar 

  10. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I: low order conforming, nonconforming, and mixed FEM. Math. Comp. 71, 945–969 (2001)

    Google Scholar 

  11. Cascón, J.M., Ferragut, L., Asensio, M.I.: Space-time adaptive algorithm for the mixed parabolic problem. Numer. Math. 103(3), 367–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Castro-Diaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh adaptation for flow simulations. Int. J. Numer. Meth. Fluids 25(4), 475–491 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  14. Clément, Ph.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2, 77–84 (1975)

    Google Scholar 

  15. Correa, M.R., Loula, A.F.D.: Unconditionally stable mixed finite element methods for Darcy flow. Comput. Methods Appl. Mech. Eng. 197(17), 1525–1540 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Diersch, H.-J.: Finite element modelling of recirculating density-driven saltwater intrusion processes in groundwater. Adv. Water Resour. 11(1), 25–43 (1988)

    Article  Google Scholar 

  17. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica 4, 105–158 (1995)

    Article  MathSciNet  Google Scholar 

  18. Farrell, P.E., Micheletti, S., Perotto, S.: An anisotropic Zienkiewicz-Zhu-type error estimator for 3D applications. Int. J. Numer. Methods Eng. 85(6), 671–692 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Farrell, P.E., Piggott, M.D., Pain, C.C., Gorman, G.J., Wilson, C.R.: Conservative interpolation between unstructured meshes via supermesh construction. Comput. Methods Appl. Mech. Eng. 198(33–36), 2632–2642 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fetter, C.W.: Contaminant Hydrogeology, Waveland Prentice Hall, Englewood Cliffs (2008)

    Google Scholar 

  21. Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Formaggia, L., Perotto, S.: Anisotropic error estimates for elliptic problems. Numer. Math. 94(1), 67–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gedeon, M., Mallants, D.: Sensitivity analysis of a combined groundwater flow and solute transport model using local-grid refinement: a case study. Math. Geosci. 44(7), 881–899 (2012)

    Article  Google Scholar 

  24. George, P.L., Borouchaki, H.: Delaunay Triangulation and Meshing: Application to Finite Elements. Hermes, Paris (1998)

    MATH  Google Scholar 

  25. Giles, M.B., Suli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11, 145–236 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gruau, C., Coupez, T.: 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech. Engrg. 194(48–49), 4951–4976 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MATH  MathSciNet  Google Scholar 

  28. Katragadda, P., Grosse, I.R.: A posteriori error estimation and adaptive mesh refinement for combined thermal-stress finite element analysis. Comput. Struct. 59(6), 1149–1163 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kavetski, D., Binning, P., Sloan, S.W.: Adaptive backward Euler time stepping with truncation error control for numerical modelling of unsaturated fluid flow. Int. J. Numer. Methods Eng. 53(6), 1301–1322 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Knupp, P.: A moving mesh algorithm for 3-D regional groundwater flow with water table and seepage face. Adv. Water Resour. 19(2), 83–95 (1996)

    Article  Google Scholar 

  31. Krìzek, M., Neittaanmäki, P.: Superconvergence phenomenon in the finite element method arising from average gradients. Numer. Math. 45(1), 105–116 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64(3), 203–226 (2003)

    Article  Google Scholar 

  33. Maisano, G., Micheletti, S., Perotto, S., Bottasso, C.L.: On some new recovery-based a posteriori error estimators. Comput. Methods Appl. Mech. Eng. 195, 4794–4815 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mansell, R.S., Ma, L., Ahuja, L.R., Bloom, S.A: Adaptive grid refinement in numerical models for water flow and chemical transport in soil. Vadose Zone J. 1(2), 222–238 (2002)

    Article  Google Scholar 

  35. Masud, A., Hughes, T.J.R.: A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 191(39), 4341–4370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mehl, S., Hill, M.C.: Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv. Water Resour. 25 (5), 497–511 (2002)

    Article  Google Scholar 

  37. Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Micheletti, S., Perotto, S.: Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator. Comput. Methods Appl. Mech. Eng. 195(9), 799–835 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Micheletti, S., Perotto, S.: Anisotropic mesh adaption for time-dependent problems. Int. J. Numer. Methods Fluids. 58(9), 1009–1015 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Micheletti, S., Perotto, S.: Anisotropic adaptation via a Zienkiewicz-Zhu error estimator for 2D elliptic problems. In: Kreiss, G., Lötstedt, P., Malqvist, A, Neytcheva, M. (eds.) Numerical Mathematics and Advanced Applications, pp. 645–653. Springer, New York (2010)

    Google Scholar 

  41. Micheletti, S., Perotto, S., Farrell, P.E.: A recovery-based error estimator for anisotropic mesh adaptation in CFD. SeMA J. 50(1), 115–137 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Micheletti, S., Perotto, S., Picasso, M.: Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and the Stokes problems. SIAM J. Numer. Anal. 41(3), 1131–1162 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Mu, L., Jari, R.: A recovery-based error estimate for nonconforming finite volume methods of interface problems. Appl. Math. Comput. 220, 63–74 (2013)

    Article  MathSciNet  Google Scholar 

  44. Nakshatrala, K.B., Turner, D.Z., Hjelmstad, K.D., Masud, A.: A stabilized mixed finite element method for Darcy flow based on a multiscale decomposition of the solution. Comput. Methods Appl. Mech. Eng. 195(33–36), 4036–4049 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.: Adaptive remeshing for compressible flow computations. J. Comput. Phys. 72(2), 449–466 (1987)

    Article  MATH  Google Scholar 

  46. Porta, G.M., Perotto, S., Ballio F.: A space-time adaptation scheme for unsteady shallow water problems. Math. Comput. Simulat. 82(12), 2929–2950 (2011)

    Article  MathSciNet  Google Scholar 

  47. Porta, G.M., Perotto, S., Ballio, F.: Anisotropic mesh adaptation driven by a recovery-based error estimator for shallow water flow modeling. Int. J. Numer. Methods Fluids 70(3), 269–299 (2012)

    Article  MathSciNet  Google Scholar 

  48. Rodríguez, R.: Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ. Equ. 10, 625–635 (1994)

    Article  MATH  Google Scholar 

  49. Saaltink, M.W., Carrera, J., Olivella S.: Mass balance errors when solving the convective form of the transport equation in transient flow problems. Water Resour. Res. 40(5), W05107 (2004). doi:10.1029/2003WR002866

    Article  Google Scholar 

  50. Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sun, S., Wheeler, M.F.: Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport. Comput. Methods Appl. Mech. Eng. 195(25), 3382–3405 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Wexler, E.J.: Analytical Solutions for One-, Two-, and Three-Dimensional Solute Transport in Ground-Water Systems with Uniform Flow. U.S. Geological Survey, vol. 3, Techniques of Water-Resources Investigations, Book, Chapter 7 (2005)

    Google Scholar 

  53. Yan, N.N., Zhou, A.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190 (32), 4289–4299 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Younes, A., Ackerer, P.: Empirical versus time stepping with embedded error control for density-driven flow in porous media. Water Resour. Res. 46(8), W08523 (2010). doi:10.1029/2009WR008229

    Article  Google Scholar 

  55. Younes, A., Ackerer, P., Lehmann, F.: A new efficient Eulerian-Lagrangian localized adjoint method for solving the advection-dispersion equation on unstructured meshes. Adv. Water Resour. 29(7), 1056–1074 (2006)

    Article  Google Scholar 

  56. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 24 (2), 337–357 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  57. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates, Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33 (7), 1331–1364 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  58. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates, Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33 (7), 1368–1382 (1992)

    Google Scholar 

Download references

Acknowledgements

We kindly acknowledge Prof. Brian Berkowitz for sharing with us the experimental data. The financial support of MIUR (Project “Innovative methods for water resources under hydro-climatic uncertainty scenarios”, PRIN 2010/2011) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Porta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Esfandiar, B., Porta, G., Perotto, S., Guadagnini, A. (2015). Anisotropic Mesh and Time Step Adaptivity for Solute Transport Modeling in Porous Media. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_12

Download citation

Publish with us

Policies and ethics