Skip to main content

Implicit Boundary and Adaptive Anisotropic Meshing

  • Chapter

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 5))

Abstract

Implicit boundary means that the boundaries and/or interfaces between domains are not anymore defined by an explicit boundary mesh but rather by an implicit function. It is the case with embedded boundary methods or immersed boundary methods. Here we consider a filtered level set methods and meshing is then performed using an anisotropic mesh adaptation framework applied to the level sel interpolation. The interpolation error estimate is driving the adaptive process giving rise to a new way of boundary recovery. The accuracy of the recovery process depends then on the user given parameter, an arbitrary thickness of the interface. The thickness is normally related to the mesh size, but it is shown that adaptive meshing enables to reverse this condition: fixing the thickness parameter and accounting for the adaptation process to fulfill the mesh size condition. Several examples are given to demonstrate the potential of this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kreiss, H., Petersson, A.: A second-order accurate embedded boundary method for the wave equation with dirichlet data. SIAM J. Sci. Comput. 27, 1141–1167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Peskin, C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Glowinski, R., Pan, T., Kearsley, A., Periaux, J.: Numerical simulation and optimal shape for viscous flow by a fictitious domain method. Int. J. Numer. Methods Fluids 20, 695–711 (2005)

    Article  MathSciNet  Google Scholar 

  4. Hachem, E., Digonnet, H., Massoni, E., Coupez, T.: Immersed volume method for solving natural convection, conduction and radiation of a hat-shaped disk inside a 3d enclosure. Int. J. Numer. Methods Heat Fluid Flow 22, 718–741 (2012)

    Article  Google Scholar 

  5. Hachem, E., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element solution to handle complex heat and fluid flows in industrial furnace using the immersed volume method. Int. J. Numer. Methods Fluids 68, 99–121 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hachem, E., Jannoun, G., Veysset, J., Henri, M., Pierrot, R., Poitrault, I., Massoni, E., Coupez, T.: Modeling of heat transfer and turbulent flows inside industrial furnaces. Simul. Model. Pract. Theory 30, 35–53 (2013)

    Article  Google Scholar 

  7. Johansen, H., Colella, P.: A cartesian grid embedded boundary method for poisson’s equation on irregular domains. J. Comput. Phys. 147, 60–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farhat, C., Rallu, A., Wang, K., Belytschko, T.: Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integratorsfor highly nonlinear fluid-structure interaction problems. Int. J. Numer. Methods Eng. 84(1), 73–107 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farhat, C., Maute, K., Argrow, B., Nikbay, M.: A shape optimization methodology for reducing the sonic boom initial pressure rise. AIAA J. Aircr. 45, 1007–1018 (2007)

    Article  Google Scholar 

  10. Coupez, T., Soyris, N., Chenot, J.-L.: 3-d finite element modelling of the forging process with automatic remeshing. J. Mater. Process. Technol. 27(1–3), 119–133 (1991)

    Article  Google Scholar 

  11. Coupez, T., Chenot, J.: Large deformation and automatic remeshing. In: Computational Plasticity (COMPLAS III), pp. 1077–1087. Pineridge Press, Swansea (1992)

    Google Scholar 

  12. Coupez, T., Chenot, J.: Mesh topology for mesh generation problems-application to three-dimensional remeshing. In: Numerical Methods in Industrial Forming Processes, pp. 237–242. AA Balkema, Rotterdam (1992)

    Google Scholar 

  13. Coupez, T.: Generation de maillage et adaptation de maillage par optimisation locale. Revue Europeenne des elements finis 9(4), 403–423 (2000)

    MATH  Google Scholar 

  14. Gruau, C., Coupez, T.: 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech. Eng. 194, 4951–4976 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hachem, E., Feghali, S., Codina, R., Coupez, T.: Anisotropic adaptive meshing and monolithic variational multiscale method for fluid-structure interaction. Comput. Struct. 122, 88–100 (2013)

    Article  Google Scholar 

  16. Hachem, E., Feghali, S., Codina, R., Coupez, T.: Immersed stress method for fluid structure interaction. Int. J. Numer. Methods Eng. 94, 805–825 (2013)

    Article  MathSciNet  Google Scholar 

  17. Coupez, T.: Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing. J. Comput. Phys. 230, 2391–2405 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Coupez, T., Jannoun, G., Nassif, N., Nguyen, H., Digonnet, H., Hachem, E.: Adaptive time-step with anisotropic meshing for incompressible flows. J. Comput. Phys. 241, 195–211 (2013)

    Article  Google Scholar 

  19. Coupez, T., Hachem, E.: Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing. Comput. Methods Appl. Mech. Eng. 267, 65–85 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Coupez, T.: A mesh improvement method for 3D automatic remeshing. In: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, pp. 615–626. Pineridge Press, Swansea (1994)

    Google Scholar 

  21. Gruau, C., Coupez, T.: 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech. Eng. 194, 4951–4976 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hachem, E., Rivaux, B., Kloczko, T., Digonnet, H., Coupez, T.: Stabilized finite element method for incompressible flows with high Reynolds number. J. Comput. Phys. 229, 8643–8665 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ville, L., Silva, L., Coupez, T.: Convected level set method for the numerical simulation of fluid buckling. Int. J. Numer. Methods Fluids. 66(3), 324–344 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Coupez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coupez, T., Silva, L., Hachem, E. (2015). Implicit Boundary and Adaptive Anisotropic Meshing. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_1

Download citation

Publish with us

Policies and ethics