Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Microwave techniques to analyze dielectric properties of organic tissue, for the detection of abnormalities such as cancerous cells and its correspondent treatment is a hot topic for research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. State of Cancer Research. http://www.cancer.gov

  2. P. Gascoyne, J. Noshari, F. Becker, R. Pethig, Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells. IEEE Trans. Ind. Appl. 30(4), 829–834 (1994)

    Article  Google Scholar 

  3. P. Gascoyne, X. Wang, Y. Huang, F. Becker, Dielectrophoretic separation of cancer cells from blood. IEEE Trans. Ind. Appl. 33(3), 670–678 (1997)

    Article  Google Scholar 

  4. P. Gascoyne, J. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE 92(1), 22–42 (2004)

    Article  Google Scholar 

  5. Y. Choongho, J. Vykoukal, D. Vykoukal, J. Schwartz, L. Shi, P. Gascoyne, A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J. Microelectromech. Syst. 14(3), 480–487 (2005)

    Article  Google Scholar 

  6. H. Schwan, K. Foster, RF-field interactions with biological systems: electrical properties and biophysical mechanisms. Proc. IEEE 68(1), 104–113 (1980)

    Article  Google Scholar 

  7. H. Schwan, Analysis of dielectric data: experience gained with biological materials. IEEE Trans. Electr. Insul. EI-20(6), 913–922 (1985)

    Google Scholar 

  8. H.P. Schwan, Electrical properties of tissues and cell suspensions: mechanisms and models, in 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, Maryland, USA, IEEE, November 1994, pp. A70–A71. doi:10.1109/IEMBS.1994.412155

  9. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissue: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293 (1996)

    Google Scholar 

  10. D.A. Dean, D. Machado-Aranda, T. Ramanathan, I. Molina, R. Sundararajan, Electrical properties of biological tissues—an impedance spectroscopy study, in IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, IEEE, October 2006, pp. 357–360. doi:10.1109/CEIDP.2006.311943

  11. M.S. Boybay, O.M. Ramahi, Double negative metamaterials for subsurface detection, in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, IEEE, August 2007, pp. 3485–3488. doi:10.1109/IEMBS.2007.4353081

  12. M. Schaefer, K. Nowak, B. Kherad, W. Gross, S. Post, M. Gebhard, Time domain reflectometry: measurement of free water in normal lung and pulmonary edema. Med. Biol. Eng. Comput. 42(5), 577–580 (2004)

    Google Scholar 

  13. T.T. Thai, J.M. Mehdi, H. Aubert, P. Pons, G.R. DeJean, M.M. Tentzeris, R. Plana, A novel passive wireless ultrasensitive RF temperature transducer for remote sensing, in IEEE MTT-S International Microwave Symposium Digest (MTT), Anaheim, USA, IEEE, May 2010, pp. 473–476. doi:10.1109/MWSYM.2010.5517892

  14. Y. Xia, L. Wang, A wireless sensor using left-handed metamaterials, in 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008, WiCOM ’08, Dalian, China, IEEE, September 2008, pp. 1–3. doi:10.1109/WiCom.920

  15. E. Ekmekci, C. Turhan-Sayan, Metamaterial sensor applications based on broadside-coupled SRR and V-shaped resonator structures, in IEEE International Symposium on Antennas and Propagation (APSURSI), Washington, USA, IEEE, July 2011, pp. 1170–1172. doi:10.1109/APS.2011.5996492

  16. M. Abidi, A. Elhawil, J. Stiens, R. Vounchx, J. B. Tahar, F. Choubani, Sensing liquid properties using split-ring resonator in Mm-wave band, in IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Phoenix, USA, IEEE, November 2010, pp. 1298–1301. DOI:10.1109/IECON.2010.5675495

  17. R. Melik, E. Unal, N. Perkgoz, C. Puttlitz, H. Demir, Metamaterial-based wireless strain sensors. Appl. Phys. Lett. 95(1), 011106 (2009)

    Google Scholar 

  18. R. Melik, E. Unal, N. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, H. Demir, Nested metamaterials for wireless strain sensing. IEEE J. Sel. Top. Quantum Electron. 16(2), 450–458 (2010)

    Google Scholar 

  19. J.F. O’Hara, R. Singh, X.G. Peralta, I. Brener, E.A. Shaner, D.W. Branch, J. Han, A.J. Taylor, W. Zhang, Sensing liquid properties using split-ring resonator in Mm-wave band, in Conference on Lasers and Electro-Optics, Quantum Electronics and Laser Science, CLEO/QELS 2008, San Jose, USA, May 2008, pp. 1–2

    Google Scholar 

  20. P. Sprawls, Physical Principles of Medical Imaging (Lippincott Williams and Wilkins, Philadelphia, 1987)

    Google Scholar 

  21. J. Lin, Electromagnetic Fields in Biological Systems (CRC Press, Boca Raton, 2012)

    Google Scholar 

  22. C. Brace, Microwave ablation in Tissue Ablation: Devices and Procedures ed. by J.G. Webster (Wiley, Hoboken, 2005)

    Google Scholar 

  23. M. Puentes, C. Weiß, M. Schüßler, R. Jakoby, Sensor array based on split ring resonators for analysis of organic tissues, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, (Baltimore, USA, June 2011)

    Google Scholar 

  24. J. Baena, J. Bonache, F. Martin, R. Sillero, F. Falcone, T. Lopetegi, M. Laso, J. Garcia-Garcia, I. Gil, M. Portillo, M. Sorolla, Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005)

    Google Scholar 

  25. M. Puentes, M. Maasch, M. Schüßler, R. Jakoby, Frequency multiplexed 2-dimensional sensor array based on split-ring resonators for organic tissue analysis. IEEE Trans. Microwave Theory Tech. 60(6), 1720–1727 (2012)

    Google Scholar 

  26. M. Puentes, M. Schüßler, R. Jakoby, 2D sensor array based on split rings resonators for monitoring of organic tissue, in Proceedings of IEEE International Sensors Conference, (Limerick, Ireland, October 2011)

    Google Scholar 

  27. A. Trehan, N. Nikolova, Numerical and physical models for microwave breast imaging. Department of Electrical and Computer Engineering, McMaster University, vol. 47, Issue 2 (2009)

    Google Scholar 

  28. Y. Okano, K. Ito, H. Kawai, Solid phantom composed of glycerin and its application to SAR estimation. IEICE Trans. Commun. J83-B(4), 534–543 (2000) (Japanese edition)

    Google Scholar 

  29. M. Puentes, F. Bashir, M. Maasch, M. Schüßler, R. Jakoby, Planar microwave sensor for thermal ablation of organic tissue, in Proceedings of European Microwave Conference, (Nuremberg, Germany, October 2013)

    Google Scholar 

  30. R. Habash, R. Bansal, D. Krewski, H. Alhafid, Thermal therapy, part III: ablation techniques. Crit. Rev. Biomed. Eng. 35(1–2), 37–121 (2007)

    Article  Google Scholar 

  31. C. Brace, Thermal tumor ablation in clinical use. IEEE Pulse 2, 28–38 (2011)

    Google Scholar 

  32. M. Nikfarjam, V. Muralidharan, C. Christophi, Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 127(2), 208–223 (2005)

    Google Scholar 

  33. M. Velazquez-Ahumada, M. Freire, R. Marques, Metamaterial applicator for microwave hyperthermia, in Proceedings of URSI General Assembly and Scientific Symposium of International Union of Radio Science, (Istanbul, Turkey, August 2011)

    Google Scholar 

  34. A. Strickland, P. Clegg, N. Cronin, B. Swift, M. Festing, K. West, G. Robertson, D.M. Lloyd, Experimental study of large-volume microwave ablation in the liver. Brit. J. Surg. 89(8), 1003–1007 (2002)

    Article  Google Scholar 

  35. F. Kreith, D. Goswami, The CRC Handbook of Mechanical Engineering (CRC Press, Boca Raton, 2005)

    Google Scholar 

  36. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting forearm. J. Appl. Physiol. 1, 93–122 (1948) (Republished 1998)

    Google Scholar 

  37. M. Puentes, F. Bashir, M. Schüßler, R. Jakoby, Dual mode microwave tool for dielectric analysis and thermal ablation treatment of organic tissue, in Proceedings of 34th Annual International Conference of the Engineering in Medicine and Biology Society, (San Diego, USA, August 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Puentes Vargas .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Puentes Vargas, M. (2014). Analysis and Treatment of Organic Tissues. In: Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06041-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06041-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06040-8

  • Online ISBN: 978-3-319-06041-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics