Skip to main content

Effects of Interfacial Redox in Mussel Adhesive Protein Films on Mica

  • Chapter
  • First Online:
Adhesive Interactions of Mussel Foot Proteins

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The 3,4-dihydroxyphenylalanine (Dopa)-containing proteins of mussels and sandcastle worms provide attractive design paradigms for engineering synthetic polymers as wet adhesives and coatings. Despite this, a generally accepted explanation of how Dopa interacts with most surfaces is not available. The effect of uncontrollable Dopa redox on the dependability of catechol as an anchoring functionality for polymers is a recognized problem for many mussel-inspired adhesives. Using a surface force apparatus, the effect of interfacial redox in mussel adhesive protein-3 (Mfp-3) films on mica was tested. The SFA results show that the adhesion properties of Mfp-3 are closely coupled to the redox state of Dopa. The oxidation of Dopa to Dopaquinone diminishes the adhesion of Mfp-3 on mica surfaces. Dopaquinone tautomers could be associated with structural changes in oxidized adhesive mussel foot proteins such as Mfp-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalsin JL et al (2003) J Am Chem Soc 125(14):4253–4258

    Article  CAS  Google Scholar 

  2. Amstad E et al (2009) Nano Lett 9(12):4042–4048

    Article  CAS  Google Scholar 

  3. Sever MJ et al (2004) Angew Chem Int Ed 43(4):448–450

    Article  CAS  Google Scholar 

  4. Lee H, Scherer NF, Messersmith PB (2006) Proc Natl Acad Sci U S A 103(35):12999–13003

    Article  CAS  Google Scholar 

  5. Anderson TH et al (2010) Adv Funct Mater 20(23):4196–4205

    Article  CAS  Google Scholar 

  6. Rzepecki LM, Nagafuchi T, Waite JH (1991) Arch Biochem Biophys 285(1):17–26

    Article  CAS  Google Scholar 

  7. Waite JH (1990) Comp Biochem Physiol B Biochem Mol Biol 97(1):19–29

    Article  CAS  Google Scholar 

  8. Liu B, Burdine L, Kodadek T (2006) J Am Chem Soc 128(47):15228–15235

    Article  CAS  Google Scholar 

  9. Yu ME, Deming TJ (1998) Macromolecules 31(15):4739–4745

    Article  CAS  Google Scholar 

  10. Proudfoot GM, Ritchie IM (1983) Aust J Chem 36(5):885–894

    Article  CAS  Google Scholar 

  11. Haemers S et al (2002) Langmuir 18(12):4903–4907

    Article  CAS  Google Scholar 

  12. Hook F et al (2001) Anal Chem 73(24):5796–5804

    Article  CAS  Google Scholar 

  13. Giese RF, Wu W, van Oss CJ (1998) J Disper Sci Technol 19(6–7):775–783

    Article  CAS  Google Scholar 

  14. Santiso EE et al (2007) Appl Surf Sci 253(13):5570–5579

    Article  CAS  Google Scholar 

  15. Wu ZH, Sumimoto M, Tanaka H (1995) J Wood Chem Tech 15(1):27–42

    Article  CAS  Google Scholar 

  16. Tipikin DS, Lebedev YS, Rieker A (1997) Chem Phys Lett 272(5–6):399–404

    Article  CAS  Google Scholar 

  17. Li SC et al (2010) Science 328(5980):882–884

    Article  CAS  Google Scholar 

  18. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic, Burlington, MA

    Google Scholar 

  19. Lee BP, Dalsin JL, Messersmith PB (2002) Biomacromolecules 3(5):1038–1047

    Article  CAS  Google Scholar 

  20. Pieroni O et al (1993) Biopolymers 33(1):1–10

    Article  CAS  Google Scholar 

  21. Zhao H, Waite JH (2006) J Biol Chem 281(36):26150–26158

    Article  CAS  Google Scholar 

  22. Mathur P, Ramakumar S, Chauhan VS (2004) Biopolymers 76(2):150–161

    Article  CAS  Google Scholar 

  23. Zhao H et al (2006) J Biol Chem 281(16):11090–11096

    Article  CAS  Google Scholar 

  24. Tamarin A, Lewis P, Askey J (1976) J Morphol 149(2):199–221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, J. (2014). Effects of Interfacial Redox in Mussel Adhesive Protein Films on Mica. In: Adhesive Interactions of Mussel Foot Proteins. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06031-6_3

Download citation

Publish with us

Policies and ethics