Skip to main content

Expressiveness Modulo Bisimilarity: A Coalgebraic Perspective

  • Chapter
  • First Online:
Johan van Benthem on Logic and Information Dynamics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 5))

Abstract

One of van Benthem’s seminal results is the Bisimulation Theorem characterizing modal logic as the bisimulation-invariant fragment of first-order logic. Janin and Walukiewicz extended this theorem to include fixpoint operators, showing that the modal \({\mu }\)-calculus \({\mu }\)ML is the bisimulation-invariant fragment of monadic second-order logic MSO. Their proof uses parity automata that operate on Kripke models, and feature a transition map defined in terms of certain fragments of monadic first-order logic. In this paper we decompose their proof in three parts: (1) two automata-theoretic characterizations, of MSO and \(\mu \)ML respectively, (2) a simple model-theoretic characterization of the identity-free fragment of monadic first-order logic, and (3) an automata-theoretic result, stating that (a strong version of) the second result somehow propagates to the level of full fixpoint logics. Our main contribution shows that the third result is an instance of a more general phenomenon that is essentially coalgebraic in nature. We prove that if one set \(\varLambda \) of predicate liftings (or modalities) for a certain set functor \(T\) uniformly corresponds to the \(T\)-natural fragment of another such set \(\varLambda ^{\prime }\), then the fixpoint logic associated with \(\varLambda \) is the bisimulation-invariant logic of the fixpoint logic associated with \(\varLambda ^{\prime }\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here the tacit understanding is that the variable \(v\) is interpreted as the root of the tree.

References

  1. Andréka H, van Benthem J, Németi I (1998) Modal languages and bounded fragments of predicate logic. J Philos Log 27:217–274

    Article  Google Scholar 

  2. van Benthem J (1976) Modal correspondence theory. PhD thesis, Mathematisch Instituut & Instituut voor Grondslagenonderzoek, University of Amsterdam

    Google Scholar 

  3. van Benthem J (1984) Correspondence theory. In: Gabbay DM, Guenthner F (eds) Handbook of philosophical logic, vol 2. Reidel, Dordrecht, pp 167–247

    Chapter  Google Scholar 

  4. ten Cate B, Gabelaia D, Sustretov D (2009) Modal languages for topology: expressivity and definability. Ann Pure App Log 159(1–2):146–170

    Article  Google Scholar 

  5. Cîrstea C, Kurz A, Pattinson D, Schröder L, Venema Y (2011) Modal logics are coalgebraic. Comput J 54:524–538

    Article  Google Scholar 

  6. Cîrstea C, Kupke C, Pattinson D (2009) EXPTIME tableaux for the coalgebraic \(\mu \)-calculus. In: Grädel E, Kahle R (eds) Computer science logic 2009. Lecture notes in computer science, vol 5771. Springer, New York, pp 179–193

    Google Scholar 

  7. D’Agostino G, Hollenberg M (2000) Logical questions concerning the \(\mu \)-calculus. J Symbol Log 65:310–332

    Article  Google Scholar 

  8. Dawar A, Otto M (2009) Modal characterisation theorems over special classes of frames. Ann Pure Appl Log 161:1–42

    Article  Google Scholar 

  9. Fontaine G, and Venema Y (2010) Some model theory for the modal mu-calculus: syntactic characterizations of semantic properties (Manuscript, submitted)

    Google Scholar 

  10. Fontaine G, Leal R, Venema Y (2010) Automata for coalgebras: an approach using predicate liftings. In: Abramsky s et al. (eds) Proceedings of ICALP 2010, part II. LNCS, vol 6199. Springer, New York

    Google Scholar 

  11. Grädel E, Hirsch C, Otto M (2002) Back and forth between guarded and modal logics. ACM Trans Comput Log 3:418–463

    Article  Google Scholar 

  12. Grädel E, Thomas W, Wilke T (eds) (2002) Automata, logic, and infinite games. LNCS, vol 2500. Springer, New York

    Google Scholar 

  13. Janin D, Walukiewicz I (1995) Automata for the modal \(\mu \)-calculus and related results. In: Proceedings of the twentieth international symposium on mathematical foundations of computer science, MFCS’95. LNCS, vol 969. Springer, New York, pp 552–562

    Google Scholar 

  14. Janin D, Walukiewicz I (1996) On the expressive completeness of the propositional \(\mu \)-calculus w.r.t. monadic second-order logic. In: Proceedings CONCUR ’96

    Google Scholar 

  15. Litak T, Pattinson D, Sano K, Schröder L (2012) Coalgebraic predicate logic. In: Czumaj A et al. (eds) ICALP 2012. Lecture notes in computer science, vol 7392. Springer, New York, pp 299–311

    Google Scholar 

  16. Moss L (1999) Coalgebraic logic. Ann Pure Appl Log 96:277–317 (Erratum published Ann P Appl Log 99:241–259)

    Google Scholar 

  17. Otto M (2011) Model theoretic methods for fragments of fo and special classes of (finite) structures. In: Esparza J, Michaux C, Steinhorn C (eds) Finite and algorithmic model theory. LMS Lecture notes series, vol 379. Cambridge University Press, Cambridge

    Google Scholar 

  18. Pattinson D (2003) Coalgebraic modal logic: soundness, completeness and decidability of local consequence. Theor Comput Sci 309(1–3):177–193

    Article  Google Scholar 

  19. Rosen E (1997) Modal logic over finite structures. J Log Lang Inf 6:427–439

    Article  Google Scholar 

  20. Rutten J (2000) Universal coalgebra: a theory of systems. Theor Comput Sci 249:3–80

    Article  Google Scholar 

  21. Venema Y (2006) Algebras and coalgebras. In: van Benthem J, Blackburn P, Wolter F (eds) Handbook of modal logic. Elsevier, Amsterdam, pp 331–426

    Google Scholar 

  22. Venema Y (2006) Automata and fixed point logic: a coalgebraic perspective. Inf Comput 204:637–678

    Article  Google Scholar 

  23. Walukiewicz I (2002) Monadic second-order logic on tree-like structures. Theor Comput Sc 275:311–346

    Article  Google Scholar 

Download references

Acknowledgments

The research of this author has been made possible by VICI grant 639.073.501 of the Netherlands Organization for Scientific Research (NWO). Furthermore, the author is grateful to Facundo Carreiro for many comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yde Venema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Venema, Y. (2014). Expressiveness Modulo Bisimilarity: A Coalgebraic Perspective. In: Baltag, A., Smets, S. (eds) Johan van Benthem on Logic and Information Dynamics. Outstanding Contributions to Logic, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06025-5_2

Download citation

Publish with us

Policies and ethics