Skip to main content

Structures for Epistemic Logic

  • Chapter
  • First Online:
Book cover Johan van Benthem on Logic and Information Dynamics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 5))

Abstract

In this chapter we overview the main structures of epistemic and doxastic logic. We start by discussing the most celebrated models for epistemic logic, i.e., epistemic Kripke structures. These structures provide a very intuitive interpretation of the accessibility relation, based on the notion of information. This also naturally extends to the multi-agent case. Based on Kripke models, we then look at systems that add a temporal or a computational component, and those that provide a ‘grounded’ semantics for knowledge. We also pay special attention to ‘non-standard semantics’ for knowledge and belief, i.e., semantics that are not based on an underlying relation on the sets of states. In particular, we discuss here neighbourhood semantics and topological semantics. In all of these approaches, we can clearly point at streams of results that are inspired by work by Johan van Benthem. We are extremely pleased and honoured to be part of this book dedicated to his work and influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For easy of readability, we give the group notions with \(A = \mathsf {Ag}\): cases for \(A \subseteq \mathsf {Ag}\) are similar.

  2. 2.

    DSO stands for Derived Sets are Open.

References

  1. Abramsky S (1991) Domain theory in logical form. Ann Pure Appl Logic 51(1–2):1–77

    Article  Google Scholar 

  2. Aiello M, van Benthem J (2002) A modal walk through space. J Appl Non-Classical Logics 12(3–4):319–363

    Article  Google Scholar 

  3. Aiello M, van Benthem J, Bezhanishvili G (2003) Reasoning about space: the modal way. J Logic Comput 13(6):889–920

    Article  Google Scholar 

  4. Aumann RJ (1976) Agreeing to disagree. Ann Stat 4(6):1236–1239

    Article  Google Scholar 

  5. Aumann RJ (1999) Interactive epistemology I: Knowledge. Int J Game Theory 28:263–300

    Article  Google Scholar 

  6. Baltag A, Bezhanishvili N, Özgün A, Smets S (2013) The topology of belief, belief revision and defeasible knowledge. In: Proceedings of the 4th international workshop logic, rationality, interaction (LORI 2013), pp 27–41. Springer

    Google Scholar 

  7. Barwise J (1988) Three views of common knowledge. In: Proceedings of the second conference on theoretical aspects of reasoning about knowledge, Pacific Grove, CA. Morgan Kaufmann, Los Altos, pp 365–379

    Google Scholar 

  8. Beklemishev L, Gabelaia D (2013) Topological completeness of the provability logic GLP. Ann Pure Appl Logic 164(12):1201–1223

    Article  Google Scholar 

  9. van Benthem J (1976) Modal correspondence theory. PhD thesis, University of Amsterdam

    Google Scholar 

  10. van Benthem J (1985) Modal logic and classical logic. Bibliopolis, Napoli

    Google Scholar 

  11. van Benthem J (2001) Logics for information update. In: Proceedings of the 8th conference on theoretical aspects of rationality and knowledge, TARK ’01, pp 51–67, San Francisco, CA, USA. Morgan Kaufmann

    Google Scholar 

  12. van Benthem J (2002) One is a lonely number: on the logic of communication. Technical report, ILLC, University of Amsterdam, 2002. Report PP-2002-27 (material presented at the Logic Colloquium 2002)

    Google Scholar 

  13. van Benthem J (2006) Modal frame correspondences and fixed-points. Studia Logica 83(1/3):133–155

    Article  Google Scholar 

  14. van Benthem J (2006) Open problems in logical dynamics. In: Gabbay DM, Goncharov SS, Zakharyaschev M (eds) Mathematical problems from applied logic I, vol 4. International mathematical series. Springer, New York, pp 137–192. doi:10.1007/0-387-31072-X_3

  15. van Benthem J (2011) Logical dynamics of information and interaction. Cambridge Book University, Cambridge

    Google Scholar 

  16. van Benthem J, Bezhanishvili G (2007) Modal logics of space. In: Aiello M, Pratt-Hartmann IE, van Benthem J (eds) Handbook of spatial logics. Springer, Dordrecht, pp 217–298

    Google Scholar 

  17. van Benthem J, Liu F (2004) Diversity of logical agents in games. Philosophia Scientiae 8(2):165–181

    Google Scholar 

  18. van Benthem J, Pacuit E (2006) The tree of knowledge in action: towards a common perspective. In: Governatori G, Hodkinson I, Venema Y (eds) Proceedings of advances in modal logic, vol 6. King’s College Press, London, pp 87–106

    Google Scholar 

  19. van Benthem J, Pacuit E (2011) Dynamic logics of evidence-based beliefs. Studia Logica 99:61–92

    Google Scholar 

  20. van Benthem J, Sarenac D (2004) The geometry of knowledge. In: Aspects of universal logic. Travaux Logic, vol 17. University of Neuchâtel, Neuchâtel, pp 1–31

    Google Scholar 

  21. van Benthem J, Bezhanishvili G, Gehrke M (2003) Euclidean hierarchy in modal logic. Studia Logica 75(3):327–344

    Article  Google Scholar 

  22. van Benthem J, Bezhanishvili N, Hodkinson I (2012) Sahlqvist correspondence for modal mu-calculus. Studia Logica 100(1–2):31–60

    Article  Google Scholar 

  23. van Benthem J, Ghosh S, Liu F (2008) Modelling simultaneous games in dynamic logic. Synthese 165:247–268

    Article  Google Scholar 

  24. van Benthem J, Bezhanishvili G, ten Cate B, Sarenac D (2006) Multimodal logics of products of topologies. Studia Logica 84(3):369–392

    Article  Google Scholar 

  25. van Benthem J, Hoshi T, Gerbrandy J, Pacuit E (2009) Merging frameworks for interaction. J Philos Logic 38(5):491–526

    Article  Google Scholar 

  26. Bezhanishvili N (2002) Pseudomonadic algebras as algebraic models of doxastic modal logic. MLQ Math Logic Q 48(4):624–636

    Article  Google Scholar 

  27. Bezhanishvili G, Mines R, Morandi P (2003) Scattered, hausdorff-reducible, and hereditarily irresolvable spaces. Topol Appl 132(3):291–306

    Article  Google Scholar 

  28. Bezhanishvili G, Gehrke M (2005) Completeness of S4 with respect to the real line: revisited. Ann Pure Appl Logic 131(1–3):287–301

    Article  Google Scholar 

  29. Bezhanishvili G, Esakia L, Gabelaia D (2005) Some results on modal axiomatization and definability for topological spaces. Studia Logica 81(3):325–355

    Article  Google Scholar 

  30. Bezhanishvili G, Mines R, Morandi P (2008) Topo-canonical completions of closure algebras and Heyting algebras. Algebra Universalis 58(1):1–34

    Article  Google Scholar 

  31. Bezhanishvili G, Esakia L, Gabelaia D (2010) The modal logic of Stone spaces: diamond as derivative. Rev Symb Logic 3(1):26–40

    Article  Google Scholar 

  32. Bezhanishvili G, Esakia L, Gabelaia D (2011) Spectral and \(T_0\)-spaces in d-semantics. In: 8th International Tbilisi symposium on logic, language, and computation. Revised selected papers. LNAI, vol 6618, pp 16–29

    Google Scholar 

  33. Blackburn P, de Rijke M, Venema Y (2001) Modal logic. Cambridge tracts in theoretical computer science, vol 53. Cambridge University Press, Cambridge

    Google Scholar 

  34. Blackburn P, de Rijke M, Venema Y (2001) Modal logic. Cambridge University Press, New York

    Google Scholar 

  35. Bradfield J, Stirling C (2007) Modal mu-calculus. In: Blackburn P, van Benthem J, Wolter F (eds) Handbook of modal logic. Elsevier, New York, pp 721–756

    Google Scholar 

  36. ten Cate B, Gabelaia D, Sustretov D (2009) Modal languages for topology: expressivity and definability. Ann Pure Appl Logic 159(1–2):146–170

    Article  Google Scholar 

  37. Chagrov A, Zakharyaschev M (1997) Modal logic. The Clarendon Press, Oxford

    Google Scholar 

  38. Chellas BF (1980) Modal logic. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Dabrowski A, Moss L, Parikh R (1996) Topological reasoning and the logic of knowledge. Ann Pure Appl Logic 78(1–3):73–110

    Article  Google Scholar 

  40. van Ditmarsch H, Duque Fernández D, van der Hoek W (2011) On the definability of simulability and bisimilarity by finite epistemic models. In: Leite J, Torroni P, Ågotnes T, Boella G, van der Torre L (eds) Computational logic in multi-agent systems (CLIMA XII). LNCS, vol 6814. Springer, New York, pp 74–87

    Google Scholar 

  41. van Ditmarsch H, van der Hoek W, Kooi B (2009) Knowing more—from global to local correspondence. In: Boutillier C (ed) Proceedings of IJCAI-09, pp 955–960

    Google Scholar 

  42. Engelking R (1989) General topology, vol 6, 2nd edn. Heldermann Verlag, Berlin

    Google Scholar 

  43. Esakia L (1981) Diagonal constructions, the Löb formula and rarefied Cantor’s scattered spaces. In: Studies in logic and semantics. Metsniereba, Tbilisi, pp 128–143

    Google Scholar 

  44. Esakia L (2001) Weak transitivity—a restitution. In: Karpenko AS (ed) Logical investigations, vol 8 (Russian) (Moscow, 2001). Nauka, Moscow, pp 244–255

    Google Scholar 

  45. Esakia L (2004) Intuitionistic logic and modality via topology. Ann Pure Appl Logic 127(1–3):155–170

    Article  Google Scholar 

  46. Escardo M (2004) Domain theory in logical form. Electron Notes Theor Comput Sci 87:21–156

    Google Scholar 

  47. Fagin R, Halpern JY, Moses Y, Vardi MY (1995) Reasoning about Knowledge. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  48. Fernández-Duque D (2010) Absolute completeness of S\(4_u\) for its measure-theoretic semantics. In: Beklemishev L, Goranko V, Shehtman V (eds) Advances in modal logic, vol. 8. College Publications, London, pp 100–119

    Google Scholar 

  49. Fontaine G (2010) Modal fixpoint logic: some model theoretic questions. PhD thesis, University of Amsterdam

    Google Scholar 

  50. French T, van der Hoek W, Iliev P, Kooi BP (2013) Succinctness of epistemic languages. Artif Intell 197:56–85

    Google Scholar 

  51. van der Hoek W, Meyer J-J Ch (1992) Making some issues of implicit knowledge explicit. Int J Found Comput Sci 3(2):193–224

    Google Scholar 

  52. Gabbay DM, Kurucz A, Wolter F, Zakharyaschev M (2003) Many-dimensional modal logics: theory and applications.Studies in logic and the foundations of mathematics, vol 148. North-Holland, Amsterdam

    Google Scholar 

  53. Gabbay D, Pnueli A, Shelah S, Stavi J (1980) On the temporal analysis of fairness. In: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL ’80. ACM, New York, NY, USA, pp 163–173

    Google Scholar 

  54. Gabelaia D (2001) Modal definability in topology. Master’s Thesis, available as ILLC report: MoL-2001-10: 2001

    Google Scholar 

  55. Gabelaia D, Kurucz A, Wolter F, Zakharyaschev M (2005) Products of ‘transitive’ modal logics. J Symb Logic 70(3):993–1021

    Article  Google Scholar 

  56. Georgatos K (1993) Modal logics for topological spaces. ProQuest LLC, Ann Arbor, MI. Thesis (PhD)-City University of New York

    Google Scholar 

  57. Georgatos K (1994) Reasoning about knowledge on computation trees. Logics in artificial intelligence. LNCS, vol 838. Springer, Berlin, pp 300–315

    Google Scholar 

  58. Gerson MS (1975) An extension of \(S4\) complete for the neighbourhood semantics but incomplete for the relational semantics. Studia Logica 34(4):333–342

    Article  Google Scholar 

  59. Gettier E (1963) Is justified true belief knowledge? Analysis 23:121–123

    Article  Google Scholar 

  60. Goldblatt R (1985) An algebraic study of well-foundedness. Studia Logica 44(4):423–437

    Article  Google Scholar 

  61. Halpern JY, Vardi MY (1989) The complexity of reasoning about knowledge and time. i. lower bounds. J Comput Syst Sci 38(1):195–237

    Article  Google Scholar 

  62. Hansen HH (2003) Monotonic modal logics. Master’s Thesis, available as: ILLC report: PP-2003-24

    Google Scholar 

  63. Hansen HH, Kupke C, Pacuit E (2007) Bisimulation for neighbourhood structures. In: Haveraanen M, Montanari U, Mossakoswki T (ed) CALCO. LNCS, vol 4624. Springer, New York, pp 279–293

    Google Scholar 

  64. Harel D, Kozen D, Tiuryn J (2000) Dynamic logic. Foundations of computing series. The MIT Press, Cambridge

    Google Scholar 

  65. Heinemann B (2008) Topology and knowledge of multiple agents. In: Geffner H, Prada R, Machado Alexandre I, David N (eds) Advances in artificial intelligence IBERAMIA 2008, vol. 5290 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 1–10

    Google Scholar 

  66. Heinemann B (2010) The cantor space as a generic model of topologically presented knowledge. In: Ablayev F, Mayr E (eds) Computer science theory and applications, vol. 6072 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 169–180

    Google Scholar 

  67. Heinemann B (2010) Logics for multi-subset spaces. J Appl Non-Classical Logics 20(3):219–240

    Google Scholar 

  68. Heinemann B (2010) Using hybrid logic for coping with functions in subset spaces. Studia Logica 94(1):23–45

    Article  Google Scholar 

  69. Hintikka J (1962) Knowledge and belief, an introduction to the logic of the two notions. Cornell University Press, Ithaca, New York (Republished in 2005 by King’s College, London)

    Google Scholar 

  70. Hintikka J (1986) Reasoning about knowledge in philosophy. In: Halpern JY (ed) Proceedings of the 1986 conference on theoretical aspects of reasoning about knowledge. Morgan Kaufmann Publishers, San Francisco, pp 63–80

    Google Scholar 

  71. Hodkinson I (2011) Simple completeness proofs for some spatial logics of the real line. In: Proc. 12th Asian logic conference, Wellington (to appear)

    Google Scholar 

  72. Hodkinson I (2013) On the Priorean temporal logic with ‘around now’ over the real line. J Logic Comput

    Google Scholar 

  73. van der Hoek W (1993) Systems for knowledge and beliefs. J Logic Comput 3(2):173–195

    Article  Google Scholar 

  74. Joshi KD (1983) Introduction to general topology. A halsted press book. Wiley, New York

    Google Scholar 

  75. Kontchakov R, Pratt-Hartmann I, Wolter F, Zakharyaschev M (2010) Spatial logics with connectedness predicates. Log Methods Comput Sci 6(3):3:5, 43

    Google Scholar 

  76. Kraus S, Lehmann D (1988) Knowledge, belief and time. Theor Comput Sci 58:155–174

    Article  Google Scholar 

  77. Kremer P (2013) Strong completeness of S4 wrt the real line. Manuscript

    Google Scholar 

  78. Kremer P The incompleteness of \({S}4 \oplus {S}4\) for the product space \(\mathbb{R}\times \mathbb{R}\). Studia Logica (to appear)

    Google Scholar 

  79. Kremer P (2013) Strong completeness of S4 wrt any dense-in-itself metric space. Rev Symb Logic 6:545–570

    Article  Google Scholar 

  80. Lismont L (1993) La connaissance commune en logique modale. Math Logic Q 39(1):115–130

    Article  Google Scholar 

  81. Lismont L (1994) Common knowledge: relating anti-founded situation semantics to modal logic neighbourhood semantics. J Logic Lang Inf 3(4):285–302

    Article  Google Scholar 

  82. Lomuscio A, Ryan M (1997) On the relation between interpreted systems and Kripke models. In: Proceedings of the AI97 workshop on theoretical and practical foundations of intelligent agents and agent-oriented systems. LNAI, vol 1441, pp 46–59

    Google Scholar 

  83. Lomuscio A, Sergot M (2000) Investigations in grounded semantics for multi-agent systems specification via deontic logic. Technical Report, Imperial College, London

    Google Scholar 

  84. Lucero-Bryan J (2010) Modal logics of some subspaces of the real numbers: diamond as derivative. ProQuest LLC, Ann Arbor, MI. Thesis (PhD)-New Mexico State University

    Google Scholar 

  85. Lucero-Bryan J (2011) The d-logic of the rational numbers: a fruitful construction. Studia Logica 97(2):265–295

    Article  Google Scholar 

  86. Lucero-Bryan J (2013) The d-logic of the real line. J Logic Comput 23(1):121–156

    Article  Google Scholar 

  87. McKinsey JCC, Tarski A (1944) The algebra of topology. Ann Math 2(45):141–191

    Article  Google Scholar 

  88. Meyer J-J Ch, van der Hoek W (1995) Epistemic logic for AI and computer science. Cambridge tracts in theoretical computer science, vol 41. Cambridge University Press, Cambridge

    Google Scholar 

  89. Mints G (1999) A completeness proof for propositional S4 in cantor space. In: Orlowska E (ed) Logic at work. Studies in fuzziness soft computing, vol 24. Physica, Heidelberg, pp 79–88

    Google Scholar 

  90. Mints G, Zhang T (2005) A proof of topological completeness for \(S4\) in (0, 1). Ann Pure Appl Logic 133(1–3):231–245

    Article  Google Scholar 

  91. Moore RC (1977) Reasoning about knowledge and action. In: Proceedings of the 5th international joint conference on artificial intelligence (IJCAI-77), Cambridge, Massachusetts

    Google Scholar 

  92. Moss L, Parikh R (1992) Topological reasoning and the logic of knowledge. In: Proceedings of the 4th conference on theoretical aspects of reasoning about knowledge, TARK, pp 95–105

    Google Scholar 

  93. Özgün A (2013) Topological models for belief and belief revision. Master’s Thesis, available as ILLC report: MoL-2013-13: 2013

    Google Scholar 

  94. Parikh R, Moss L, Steinsvold C (2007) Topology and epistemic logic. In: Aiello M, Pratt-Hartmann I, van Benthem J (eds) Handbook of spatial logics. Springer, Dordrecht, pp 299–341

    Google Scholar 

  95. Parikh R, Ramanujam R (1985) Distributed processes and the logic of knowledge. In: Parikh R (ed) Logics of Programs. LNCS, vol 193. Springer, Berlin, pp 256–268

    Google Scholar 

  96. Rao AS, Georgeff MP (1991) Modeling rational agents within a BDI-architecture. In: Fikes R, Sandewall E (eds) Proceedings of knowledge representation and reasoning (KR&R-91). Morgan Kaufmann Publishers, San Francisco, pp 473–484

    Google Scholar 

  97. Shehtman V (1990) Derived sets in Euclidean spaces and modal logic. Report X-1990-05, University of Amsterdam

    Google Scholar 

  98. Shehtman V (1993) A logic with progressive tenses. In: de Rijke M (ed) Diamonds and defaults. Kluwer Academic Publishers, New York, pp 255–285

    Google Scholar 

  99. Shehtman V (1999) “Everywhere” and “here”. J Appl Non-Classical Logics 9(2–3):369–379 (Issue in memory of George Gargov)

    Google Scholar 

  100. Smyth MB (1992) Topology. In: Abramsky S, Gabbay DM, Maibaum TSE (eds) Handbook of logic in computer science, vol 1. Oxford University Press, New York, pp 641–761

    Google Scholar 

  101. Stalnaker R (2006) On logics of knowledge and belief. Philosophical Studies 128(1):169–199

    Article  Google Scholar 

  102. Steinsvold C (2007) Topological models of belief logics. ProQuest LLC, Ann Arbor, MI. Thesis (PhD)-City University of New York

    Google Scholar 

  103. Su K, Sattar A, Governatori G, Chen Q (2005) A computationally grounded logic of knowledge, belief and certainty. In: Proceedings of AAMAS, pp 149–156. ACM Press

    Google Scholar 

  104. Troelstra AS, van Dalen D (1988) Constructivism in mathematics. Studies in logic and the foundations of mathematics: an introduction, vol I, II. North-Holland Publishing, Amsterdam

    Google Scholar 

  105. Vickers S (1989) Topology via logic. Cambridge tracts in theoretical computer science, vol 5. Cambridge University Press, Cambridge

    Google Scholar 

  106. Wang Y, Ågotnes T (2013) Multi-agent subset space logic. Accepted for IJCAI 2013

    Google Scholar 

  107. Wolter F, Zakharyaschev M (2000) Spatial reasoning in RCC-8 with Boolean region terms. In: Proceedings of the 14th European conference on artificial intelligence (ECAI-2000), pp 244–248, Berlin. IOS Press

    Google Scholar 

  108. Wooldridge M (2000) Computationally grounded theories of agency. In: Durfee E (ed) Proceedings of ICMAS. IEEE Press, New Jersey, pp 13–20

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Guram Bezhanishvili, David Gabelaia, Ian Hodkinson, Clemens Kupke and Levan Uridia for many interesting discussions and useful suggestions. Thanks also go to Aybüke Özgün for pointing out a few small errors. The first author would also like to acknowledge the support of the Netherlands Organization for Scientific Research grant 639.032.918 and the Rustaveli Science Foundation of Georgia grant FR/489/5-105/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Bezhanishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bezhanishvili, N., van der Hoek, W. (2014). Structures for Epistemic Logic. In: Baltag, A., Smets, S. (eds) Johan van Benthem on Logic and Information Dynamics. Outstanding Contributions to Logic, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06025-5_12

Download citation

Publish with us

Policies and ethics