Skip to main content

Pedotransfer Functions for Brazilian Soils

  • Chapter
  • First Online:
Application of Soil Physics in Environmental Analyses

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

The growing need for PTFs frequently leads to the use of inadequate PTFs and databases, especially when dealing with data from different regions or climates, such as in tropical and temperate climate zones. Most PTFs have been developed for soils from temperate climates, which tend to be very different from tropical soils. In fact, PTFs are not suitable for extrapolation: they should not be applied to soils that are outside the range or region where the PTFs ware developed. In this chapter the current status of PTF development in Brazil is reviewed, and suggestions for research aiming future improvements are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WA (1973) The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J Soil Sci 24:10–17

    Google Scholar 

  • Ahuja LR, Naney JW, Williams RD (1985) Estimating soil water characteristics from simpler properties and limited data. Soil Sci Soc Am J 49:1100–1105

    Google Scholar 

  • Alexander EB (1980) Bulk densities of California soils in relation to other soil properties. Soil Sci Soc Am J 44:689–692

    Google Scholar 

  • Almeida CX (2008) Funções de pedotransferência para a curva de resistência do solo à penetração. Dissertação (mestrado), Universidade Estadual Paulista, Jaboticabal, UNESP, 48 p

    Google Scholar 

  • Alves ME, Lavorenti A (2006) Remaining phosphorus estimate through multiple regression analysis. Pedosphere Soil Sci Soc China 16(5):566–571

    CAS  Google Scholar 

  • Alves GVA, Masutti MM, Oliveira LN de (2009) Caracterização da água disponível a partir de parâmetros físico-hídricos em solos de referência do sertão pernambucano. In: IV Congresso de Pesquisa e Inovação da Rede Nacional de Educação e Tecnologia -CONNEPI, Belém

    Google Scholar 

  • Anderson AN, McBratney AB (1995) Soil aggregates as mass fractals. Aust J Soil Res 33:757–772

    Google Scholar 

  • Andrade RS, Stone FL (2010) Estimativa da umidade na capacidade de campo em solos sob Cerrado. Rev Bras Eng Agríc Ambient 15(2):111–116, Campina Grade, PB

    Google Scholar 

  • Arruda FB, Zullo J, Oliveira JB (1987) Parâmetros de solo para calculo de água disponível com base na textura do solo. Rev Bras Sci Solo 11:11–15

    Google Scholar 

  • Arya LM, Paris JF (1981) A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci Soc Am J 45:1023–1030

    Google Scholar 

  • Balbino LC, Bruand A, Brossard MG, Hajnos M, Guimarães MF (2002) Changes in porosity and microaggregation in clayey Ferralsols of the Brazilian Cerrado on clearing for pasture. Eur J Soil Sci 53:219–230

    Google Scholar 

  • Balci O (1997) Principles of simulation model validation, verification, and testing. Trans Soc Comput Simul 14:3–12

    Google Scholar 

  • Barros AHC (2010) Desenvolvimento de funções de pedotransferencia e sua utilização em modelo agro-hidrologico. ESALQ/USP, Tese de Doutorado, Piracicaba, 148 p

    Google Scholar 

  • Barros AHC, Jong D, van Lier Q, Maia AHM, Scarpare VF (2013) Pedotransfer functions to estimate water retention parameters of soils in northeastern Brazil. Rev Bras Ciênc Solo 37:379–391

    Google Scholar 

  • Batjes NH (1996) Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma 71:31–52

    Google Scholar 

  • Batjes NH (2008) Mapping soil carbon stocks of Central Africa using SOTER. Geoderma 146:58–65

    CAS  Google Scholar 

  • Batjes NH, Al-Adamat R, Bhattacharyya T, Bernoux M, Cerri CEP, Gicheru P, Kamoni P, Milne E, Pal DK, Rawajfih Z (2007) Preparation of consistent soil data sets for modelling purposes: secondary SOTER data for four case study areas. Agric Ecosyst Environ 122:26–34

    Google Scholar 

  • Bell MA, Van Keulen H (1996) Effect of soil disturbance on pedotransfer function development for field capacity. Soil Technol 8:321–329

    Google Scholar 

  • Belocchi G, Acutis M, Fila G, Donatelli M (2002) An indicator of solar radiation model performance based on a fuzzy expert system. Agron J 94:1222–1233

    Google Scholar 

  • Benedetti MM, Sparovek G, Cooper M, Curi N, Carvalho Filho A (2008) Representatividade e potencial de utilização de um banco de dados de solos do Brasil. Rev Bras Cienc Solo 32:2591–2600

    Google Scholar 

  • Benites VM, Machado PLOA, Fidalgo ECC, Coelho MR, Madari BE (2007) Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma 139:90–97

    Google Scholar 

  • Bernoux M, Cerri CEP (2003) Digital soil properties database of the Amazon part from the RADAMBRASIL project (Version 1, 25 September 2005, tp://lba.cptec.inpe.br/lba_archives/CD/CD-208/Cerri/). In: Centro de Energia Nuclear Na Agricultura (CENA), Universidade de Sao Paulo

    Google Scholar 

  • Bernoux M, Arrouays D, Cerri C, Volkoff B, Jolivet C (1998) Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Sci Soc Am J 62:743–749

    CAS  Google Scholar 

  • Bird NRA, Perrier E, Rieu M (2000) The water retention function for a model of soil structure with pore and solid fractal distributions. Eur J Soil Sci 51:55–63

    Google Scholar 

  • Bouma J (1989) Using soil survey data for quantitative land evaluation, 1989. Adv Soil Sci 9:177–213

    Google Scholar 

  • Bouma J, Van Lanen HAJ (1986) Transfer functions and threshold values: from soil characteristics to land qualities. In: Proceedings of the international workshop on quantified land evaluation procedures, 27/04–2/05/1986, Washington, DC, pp 106–110

    Google Scholar 

  • Brakensiek DL, Rawls, WJ, Stephenson GR (1984) Modifying SCS hydrologic soil groups and curve numbers for rangeland soils. ASAE paper no. PNR-84203, St. Joseph

    Google Scholar 

  • Briggs LJ, McLane JW (1907) The moisture equivalents of soils. USDA Bureau of soils bulletin, 45. Washington, DC, 23 p

    Google Scholar 

  • Briggs LJ, Shantz HL (1912) The wilting coefficient for different plants and its indirect determination. USDA Bureau of plant industry Bulletin, 230. U. S. Gov. Printing Office, Washington, DC

    Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology paper no. 3. Colorado State University, Ft. Collins

    Google Scholar 

  • Bruand A (2004a) Utilizing mineralogical and chemical information in PTFs. In: Pachepsky Y, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology, Developments in soil science, 30. Elsevier, Amsterdam, pp 153–157

    Google Scholar 

  • Bruand A (2004b) Preliminary grouping of soils. In: Pachepsky Y, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology, Developments in soil science, 30. Elsevier, Amsterdam, pp 159–172

    Google Scholar 

  • Cagliari J, Veronez MR, Alves ME (2011) Remaining phosphorus estimated by pedotransfer function. Rev Bras Cienc Solo 35:203–212

    CAS  Google Scholar 

  • Campbell GS (1974) A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117:311–314

    Google Scholar 

  • Campbell GS, Shiozawa S (1994) Prediction of hydraulic properties of soils using particle size distribution and bulk density data. In: Van Genuchten MT, Leij FJ, Lund LJ (eds) Indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 317–328

    Google Scholar 

  • Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24:755–769

    Google Scholar 

  • Chagas CS, Carvalho W Jr, Bhering SB, Tanaka AK, Baca JFM (2004) Estrutura e organização do sistema de informações georreferenciadas de solos do brasil (sigsolos – versão 1.0). Rev Bras Cienc Solo 28:865–876

    Google Scholar 

  • Coelho EF, Conceição MA, Souza VAB (1998) Estimativa dos limites de disponibilidade de água em função da densidade global e da textura do solo. Rev Ceres 45:183–192

    Google Scholar 

  • Cooper M, Mendes LMS, Da Silva WLC, Sparovek G (2005) A national soil profile database for Brazil available to international scientists. Soil Sci Soc Am J 69:649–652

    CAS  Google Scholar 

  • Correa JC (1984) Características físico hídricas dos solos latossolo amarelo, podzolico vermelho amarelo e podzol hidromórfico do estado do Amazonas. Pesqui Agropecu Bras 20:1317–1322

    Google Scholar 

  • Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soil. Water Resour Res 20:682–690

    Google Scholar 

  • Costa A (2012) Retenção e disponibilidade de água em solos de santa catarina: avaliação e geração de funções de pedotransferência. Tese (doutorado) – Centro de Ciências Agroveterinárias//Universidade do Estado de Santa Catarina – UDESC. Lages, 423 p

    Google Scholar 

  • Da Silva JRL (2010) Caracterização Físico-Hídrica de Três Bacias Experimentais do Estado de Pernambuco para suporte a Modelagem Hidrológica. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal Rural de Pernambuco, Departamento Dde Tecnologia Rural, Recife

    Google Scholar 

  • Da Silva AS, Brito LT, Oliveira CA, Mota AW (1990) Parâmetros de solo em função da umidade na capacidade de campo em áreas irrigáveis do trópico semiárido Brasileiro. Pesqui Agropecu Bras 25:103–116, 19

    Google Scholar 

  • Da Silva AP, Tormena CA, Fidalski J, Imhoff SS (2008) Funções de pedotransferência para as curvas de retenção de água e de resistência do solo à penetração. Rev Bras Ciênc Solo, Viçosa 32(1):1–10

    Google Scholar 

  • Dalbianco L (2009) Variabilidade espacial e estimativa da condutividade hidráulica e caracterização físico-hídrica de uma microbacia hidrográfica rural. Universidade Federal de Santa Maria (UFSM), Centro de Ciências Rurais, Dissertação (mestrado), 116 p

    Google Scholar 

  • Dane JH, Puckett W (1992) Field soil hydraulic properties based on physical and mineralogical information. In: Van Genuchten MT, Leij FJ, Lund LJ (eds) Indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 389–403

    Google Scholar 

  • De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69:500–510

    Google Scholar 

  • Demattê JLI (1988) Manejo de Solos ácidos dos Trópico úmidos – Região Amazônica. Fundação Cargill, Campinas

    Google Scholar 

  • Dos Santos WJR, Curi N, Da Silva SHG, Araújo EF, Marques JJ (2013) Pedotransfer functions for water retention in different soil classes from the center-southern Rio Grande do Sul state. Ciênc Agrotec Lavras 37(1):49–60

    Google Scholar 

  • Fabian AJ, Ottoni Filho TB (2000) Determinação de capacidade de campo in situ ou através de equações de regressão. Pesqui Agropecu Bras Brasília 35(5):1029–1036

    Google Scholar 

  • Fazeli M, Shorafa M, Khojasteh DN, Shahri ARP (2010) A fractal approach for estimating soil water retention curve. J Soil Sci Environ Manage 1:177–183

    Google Scholar 

  • Fidalski J, Tormena CA (2007) Pedotransfer functions for the soil water retention and soil resistance to penetration underground cover management systems in citrus. Ciência Rural Santa Maria 37(5):45–89

    Google Scholar 

  • Fiorin TT (2008) Estimativa da infiltração de água no solo a partir de pedofunções. Santa Maria, Universidade Federal de Santa Maria, 116 p. (Tese de Doutorado)

    Google Scholar 

  • França AMS (2011) Função de pedotransferência para estimativa de estoques de carbono em solo de áreas de campo limpo úmido do Distrito Federal. Universidade de Brasília, Instituto de geociências. Brasília, 144 p

    Google Scholar 

  • Franzmeier DP (1991) Estimation of hydraulic conductivity from effective porosity data for some Indiana soils. Soil Sci Soc Am J 55:1801–1803

    Google Scholar 

  • Gaiser T, Graef F, Cordeiro JC (2000) Water retention characteristics of soils with contrasting clay mineral composition in semi-arid tropical regions. Aust J Soil Res 38:523–536

    Google Scholar 

  • Gevaerd R, Freitas S (2006) Estimativa operacional da umidade do solo para iniciação de modelos de previsão numérica da atmosfera. Parte I: descrição da metodologia e validação. Rev Bras Meteorol São Palulo 21(3):1–15

    Google Scholar 

  • Giarola NFB, Da Silva AP, Imhoff S (2002) Relações entre propriedades físicas e características de solos da Região Sul do Brasil. Rev Bras Cienc Solo 26:885–893

    CAS  Google Scholar 

  • Gonçalves MCPB (1994) Características hidrodinâmicas dos solos: sua determinação e funções de pedotransferência. Tese (Doutorado em Ciência do Solo) – Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, 212 p

    Google Scholar 

  • Gonçalves MC, Pereira LS, Leij FJ (1997) Pedo-transfer functions for estimating unsaturated hydraulic properties of Portuguese soils. Eur J Soil Sci 48:387–400

    Google Scholar 

  • Gregson K, Hector DJ, McGowan M (1987) A one-parameter model for the soil water characteristic. J Soil Sci 38:483–486

    Google Scholar 

  • Hall DGM, Reeve MJ, Thomasson AJ, Wright VF (1977) Water retention, porosity and density of field soils, Technical monograph no. 9. Soil Survey of England & Wales, Harpenden, 75 p

    Google Scholar 

  • Haverkamp R, Parlange JY (1986) Predicting the water retention curve from the particle size distribution 1. Sandy soils without organic matter. Soil Sci 142:325–329

    Google Scholar 

  • Hodnett MG, Tomasella J (2002) Marked differences between Van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer function developed for tropical soils. Geoderma 108:155–180

    CAS  Google Scholar 

  • Hutson JL, Cass A (1987) A retentivity function for use in soil-water simulation model. J Soil Sci 38:105–113

    Google Scholar 

  • Imam B, Sorooshian S, Mayr T, Schaap M, Wösten JHM, Scholes B (1999) Comparison of pedotransfer functions to compute water holding capacity using the Van Genuchten model in inorganic soils, IGBP-DIS working paper #22. The International Geosphere-Biosphere Programme, Stockholm

    Google Scholar 

  • Jagtap SS, Lal U, Jones JW, Gijsman AJ, Ritchie JT (2004) A dynamic nearest-neighbor method for estimating soil water parameters. Trans ASAE 47:1437–1444

    Google Scholar 

  • Jana RB, Mohanty BP, Springer EP (2007) Multiscale pedotransfer functions for soil water retention. Vadose Zone J 6:868–878

    Google Scholar 

  • Kroes JG, Van Dam JC, Groenendijk P, Hendriks RFA, Jacobs CMJ (2008) SWAP version 3.2. Theory description and user manual. WUR-Netherlands, Wageningen

    Google Scholar 

  • Lamorski K, Pachepsky Y, Slawihski C, Walczak RT (2008) Using support vector machines to develop pedotransfer function for water retention of soils in Poland. Soil Sci Soc Am J 72:1243–1247

    CAS  Google Scholar 

  • Lamp J, Kneib W (1981) Zur quantitativen Erfassung und Bewertung von Pedofunktionen. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 32:695–711

    Google Scholar 

  • Leenhardt D, Voltz M, Bornand M (1994) Propagation of the error of spatial prediction of soil properties in simulating crop evapotranspiration. Eur J Soil Sci 45:303–311

    Google Scholar 

  • Leij FJ, Alves WJ, Van Genuchten MTh, Williams JR (1996) The UNSODA unsaturated soil hydraulic database. Rep. EPA/600/R-96/095. USEPA Natl. Risk Manage. Lab., Cincinna,

    Google Scholar 

  • Leij FJ, Romano N, Palladino M, Schaap MG, Coppola A (2004) Topographical attributes to predict soil hydraulic properties along a hillslope transect. Water Resour Res 40:W02407. doi:10.1029/2002WR001641

    Google Scholar 

  • Lilly A, Lin H (2004) Using soil morphological attributes and soil structure in pedotransfer functions. In: Pachepsky Y, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology, Developments in soil science, 30. Elsevier, Amsterdam, pp 415–429

    Google Scholar 

  • Lopes-Assad ML (2006) Funções de pedotransferência para estimativa da disponibilidade de água em diferentes tipos de solos do Brasil. Relatório Final, Centro de Ciências Agrárias da Universidade Federal de São Carlos, 18 p

    Google Scholar 

  • Lopes-Assad ML, Sans LMA, Assad ED, Zullo J Jr (2001) Relationship between soil water retention and amount of sand in brazilian soils. Rev Bras Agrometeorologia Passo Fundo 9(3):588–596, (Nº Especial: Zoneamento Agrícola)

    Google Scholar 

  • Marcolin CD, Klein VA (2011) Determinação da densidade relativa do solo por uma função de pedotransferência para a densidade do solo máxima. Acta Scientiarum Agron Maringá 33(2):349–354

    Google Scholar 

  • Masutti MM (1997) Caracterização da água disponível a partir de parâmetros físico-hídricos em solos da zona da mata do estado de Pernambuco. Universidade Federal Rural de Pernambuco, Recife, 69 p. (Tese de Mestrado)

    Google Scholar 

  • McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil inference systems. Geoderma 109:41–73

    Google Scholar 

  • McBratney AB, Minasny B, Tranter G (2011) Necessary meta-data for pedotransfer functions. Geoderma 160:627–629

    Google Scholar 

  • McKeague JA, Wang C, Topp GC (1982) Estimating saturated hydraulic conductivity from soil morphology. Soil Sci Soc Am J 46:1239–1244

    Google Scholar 

  • McKenzie NJ, Jacquier D (1997) Improving the field estimation of saturated hydraulic conductivity in soil survey. Aust J Soil Res 35:803–825

    Google Scholar 

  • McKenzie NJ, MacLeod DA (1989) Relationships between soil morphology and soil properties relevant to irrigated and dryland agriculture. Aust J Soil Res 27:235–258

    Google Scholar 

  • Medeiros JC (2012) Funções de pedotransferência em estudos do funcionamento hídrico do solo da região sudeste do estado do Pará. Tese (Doutorado) – Escola Superior de Agricultura “Luiz de Queiroz”, USP, 120 p

    Google Scholar 

  • Mello FFC (2007) Estimativas dos estoques de carbono dos solos nos Estados de Rondônia e Mato Grosso anteriores à intervenção antrópica. Dissertação (Mestrado), Escola Superior de Agricultura Luiz de Queiroz, 88 p

    Google Scholar 

  • Mello CR, Oliveira GC, Ferreira DF, Lima JM, Lopes D (2005) Modelos para determinação dos parâmetros da equação de Van Genuchten para um Cambissolo. Rev Bras Eng Agríc Ambient Campina Grande 9(1):23–29

    Google Scholar 

  • Mendonça-Santos ML, Santos HG (2003) Mapeamento Digital de Classes e Atributos de Solos: métodos, paradigmas e novas técnicas. Embrapa Solos, Documentos, Rio de Janeiro, 55, 19 p

    Google Scholar 

  • Michelon CJ, Carlesson R, Oliveira ZB, Knies AE, Petry MT, Martins JD (2010) Funções de pedotransferência para estimativa da retenção de água em alguns solos do Rio Grande do Sul. Ciênc Rural Santa Maria 41:848–853

    Google Scholar 

  • Minasny B (2000) Efficient methods for predicting soil hydraulic properties. Thesis (Doctor of Philosophy) – University of Sydney, Sydney, 396 p

    Google Scholar 

  • Minasny B, Hartemink AE (2011) Predicting soil properties in the tropics. Earth-Sci Rev 106:52–62

    Google Scholar 

  • Minasny B, McBratney AB (2002) Uncertainty analysis for pedotransfer functions. Eur J Soil Sci 53:417–429

    Google Scholar 

  • Minasny B, Mcbratney AB, Mendonça-Santos ML, Santos HG (2003) Revisão sobre funções de pedotransferência e novos métodos de predição de classes e atributos do solo.Embrapa Solos, Rio de Janeiro, 50 p (Documentos, 45)

    Google Scholar 

  • Montenegro S, Ragab R (2012) Impact of possible climate and land use changes in the semi arid regions: a case study from North Eastern Brazil. J Hydrol 55–68:434–435

    Google Scholar 

  • Naime JM, Vaz CMP, Macedo A (2006) Determinações físicas do solo a partir da granulometria: programa Qualisolo. In: Reunião brasileira de manejo e conservação do solo e da água, 16. Aracaju. Novos desafios do carbono no manejo conservacionista. Resumos… Aracaju: Sociedade Brasileira de Ciência do Solo, 1 CD-ROM, 5 p

    Google Scholar 

  • Nascimento GB, Anjos LHC, Pereira MG, Fontana A, Santos HG (2010) Funções de pedotransferência do conteúdo de água em Latossolos Amarelos e Argissolos Amarelos. Rev Bras Ciênc Agrárias Recife UFRPE 5(4):560–569

    Google Scholar 

  • Nebel ALC, Timm LC, Cornelis W, Gabriels D, Reichardt K, Aquino LS, Pauletto EA, Reinert DJ (2010) Pedotransfer functions related to spatial variability of water retention attributes for lowland soils. Rev Bras Cienc Solo 34:669–680

    Google Scholar 

  • Nemes A, Rawls WJ (2004) Soil texture and particle-size distribution as input to estimate soil hydraulic properties. In: Pachepsky Y, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology, Developments in soil science, 30. Elsevier, Amsterdam, pp 36–50

    Google Scholar 

  • Nemes A, Schaap MG, Leij FJ, Wösten JHM (2001) Description of the unsaturated soil hydraulic database UNSODA version 2.0. J Hydrol 251:151–162

    Google Scholar 

  • Nemes A, Rawls WJ, Pachepsky Y (2006) Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties. Soil Sci Soc Am J 70:327–336

    CAS  Google Scholar 

  • Netto AA (2007) Estimativa da retenção da água no solo a partir do uso de equipamentos não convencionais, rede neurais artificiais e funções de pedotransferência. Tese (Doutorado em Engenharia Ambiental) – Universidade de São Carlos, São Carlos, 176 p

    Google Scholar 

  • Oliveira LB, Ribeiro MR, Jacomine PKT, Rodrigues JJV, Marques FA (2002) Funções de pedotransfêrencia para predição de umidade retida a potencias específicos em solos do estado de Pernambuco. Rev Bras Cienc Solo 26:315–323

    Google Scholar 

  • Oliveira SRM, Zurmely HR, Lima Júnior FA, Meirelles MSP, Santos HG, Yamashita HH (2009) Um sistema para organização de informação de solos do Brasil na Internet. In: VII Congresso Brasileiro de Agroinformática, 21 a 25 de setembro de Viçosa, MG

    Google Scholar 

  • Ottoni MV (2005) Classificação físico-hídrica de solos e determinação da capacidade de campo in situ a partir de testes de infiltração. Dissertação (Mestrado), Departamento de Eng, Civil, Universidade Federal do Rio de Janeiro (UFRJ), 157 p

    Google Scholar 

  • Pachepsky Y, Rawls WJ (eds) (2004) Development of pedotransfer functions in soil hydrology, Development in soil science 30. Elsevier, Amsterdam

    Google Scholar 

  • Pachepsky Y, Schaap MG (2004) Data mining and exploration techniques. In: Pachepsky Y, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology, Developments in soil science, 30. Elsevier, Amsterdam, pp 21–32

    Google Scholar 

  • Pachepsky Y, Mironenko EV, Scherbakov RA (1992) Prediction and use of soil hydraulic properties. In: Van Genuchten MT, Leij FJ, Lund LJ (eds) Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 203–212

    Google Scholar 

  • Pachepsky Y, Timlin D, Várallyay G (1996) Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci Soc Am J 60:727–733

    CAS  Google Scholar 

  • Pachepsky Y, Crawford JW, Rawls WJ (1999a) Fractals in soil science: preface. Geoderma 88(3–4), 273 p

    Google Scholar 

  • Pachepsky Y, Rawls WJ, Timlin DJ (1999b) The current status of pedotransfer functions: their accuracy, reliability, and utility in field- and regional-scale modeling. In: Corwin DL, Loague K, Ellsworth TR (eds) Assessment of non-point source pollution in the Vadose zone, Geophysical monograph 108. American Geophysical Union, Washington, DC, pp 223–234

    Google Scholar 

  • Peraza JES (2003) Retenção de água e pedofunções para solos do Rio Grande do Sul. Tese (Mestrado em Engenharia Agrícola) – Universidade Federal de Santa Maria, Santa Maria, 118 p

    Google Scholar 

  • Prevedello CL (1999) Programa SPLINTEX para estimar a curva de retenção de água a partir da granulometria (composição) do solo – Versão 1.0

    Google Scholar 

  • Puckett WE, Dane JH, Hajek BF (1985) Physical and mineralogical data to determine soil hydraulic properties. Soil Sci Soc Am J 49:831–836

    Google Scholar 

  • Rawls WJ (1983) Estimating soil bulk density from particle size analysis and organic matter content. Soil Sci 135:123–125

    Google Scholar 

  • Rawls WJ, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Trans Am Soc Agric Eng 25:1316–1328

    Google Scholar 

  • Rawls WJ, Gish TJ, Brakensiek DL (1991) Estimating soil water retention from soil physical properties and characteristics. Adv Agron 16:213–234

    Google Scholar 

  • Reichardt K (1988) Capacidade de campo. Rev Bras Ciênc Solo 12:211–216

    Google Scholar 

  • Reichardt K, Timm LC (2004) Solo, planta e atmosfera: conceitos, processos e aplicações. Manole, Barueri, 478 p

    Google Scholar 

  • Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Hakansson I (2008) Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res 102:242–254

    Google Scholar 

  • Reichert JM, Albuquerque JA, Kaiser DR, Reinert DJ, Urach FL, Carlesso R (2009) Estimation of water retention under availability in soils of Rio Grande do Sul. Rev Bras Cienc Solo 33:1547–1560

    Google Scholar 

  • Rodrigues LN, Maia AHN, Da Silva RN (2011) Funções de pedotransferência para estimar capacidade de campo, ponto de murcha permanente e densidade global em solos de uma bacia hidrográfica do bioma cerrado. Anais do XL Congresso Brasileiro de Engenharia Agrícola – Conbea, Cuiabá

    Google Scholar 

  • Rossato L (2001) Estimativa da capacidade de armazenamento de água no solo do Brasil. São José dos Campos:INPE-(INPE-8915-TDI/809), 145 p

    Google Scholar 

  • Rossato L, Alvalá RCS, Tomasella J (2004) Variação espaço-temporal da umidade do solo no Brasil: análise das condições médias para o período de 1971–1990. Rev Bras Meteorologia 19(2):113–122

    Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578

    CAS  Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil water characteristics from soil texture. Soil Sci Soc Am J 50:1031–1036

    Google Scholar 

  • Schaap MG (2004) Accuracy and uncertainty in PTF predictions. In: Pachepsky Y, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology, Developments in soil science, 30. Elsevier, Amsterdam, pp 415–429

    Google Scholar 

  • Schwertmann U, Taylor RM (1977) Iron oxides. In: Dixon JB (ed) Minerals in soil environments. Soil Science Society of America, Madison. 948 p

    Google Scholar 

  • Shein EV, Arkhangel’skaya TA (2006) Pedotransfer functions: state of the art, problems, and outlooks. Eurasian Soil Sci 39:1089–1099

    Google Scholar 

  • Sobieraj J, Elsenbeer H, Vertessy RA (2001) Pedotransfer functions for estimating hydraulic conductivity: implication for modelling storm flow generation. J Hydrol 251:202–220

    Google Scholar 

  • Souza LD, Reichardt K (1996) Estimativas de capacidade de campo. Rev Bras Cienc Solo 20:183–189

    Google Scholar 

  • Tietje O, Hennings V (1996) Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma 69:71–84

    Google Scholar 

  • Tietje O, Tapkenhinrichs M (1993) Evaluation of pedotransfer functions. Soil Sci Soc Am J 57:1088–1095

    Google Scholar 

  • Tomasella J, Hodnett MG (1996) Soil hydraulic properties and Van Genuchten parameters for an oxisol under pasture in central Amazonia. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 101–124

    Google Scholar 

  • Tomasella J, Hodnett MG (1997) Estimating unsaturated hydraulic conductivity of Brazilian soils using soil-water retention data. Soil Sci 162:703–712

    CAS  Google Scholar 

  • Tomasella J, Hodnett MG (1998) Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Sci 163:190–202

    CAS  Google Scholar 

  • Tomasella J, Hodnett MG (2004) Pedotransfer functions for tropical soils. In: Pachepsky Y, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology, Developments in soil science, 30. Elsevier, Amsterdam, pp 415–429

    Google Scholar 

  • Tomasella J, Hodnett MG, Rossato L (2000) Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci Soc Am J 64:327–338

    CAS  Google Scholar 

  • Tomasella J, Pachepsky Y, Crestana S, Rawls WJ (2003) Comparison of two techniques to develop pedotransfer functions for water retention. Soil Sci Soc Am J 67:1085–1092. Trans Am Soc Agric Eng, 34:417–422

    CAS  Google Scholar 

  • Tormena CA, Da Silva AP (2002) Incorporação da densidade no ajuste de dois modelos à curva de retenção de água no solo. Rev Bras Cienc Solo 26:305–314

    Google Scholar 

  • Twarakavi NKC, Simunek J, Schaap MG (2009) Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Sci Soc Am J 73:1443–1452

    CAS  Google Scholar 

  • Tyler SW, Wheatcraft SW (1989) Application of fractal mathematics to soil water retention estimation. Soil Sci Soc Am J 53:987–996

    Google Scholar 

  • Urach FL (2007) Estimativa da retenção de água em solos para fins de irrigacao. Tese de Mestrado (Mestrado em Engenharia de Água no solo) – Universidade de Santa Maria, Santa Maria, 79 p

    Google Scholar 

  • Van den Berg M, Klamt E, Van Reeuwijk LP, Sombroek G (1997) Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma 78:161–180

    Google Scholar 

  • Van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–989

    Google Scholar 

  • Vaz CMP, Iossi MF, Naime JM, Macedo A (2004) Validação de modelos para estimativa indireta da capacidade de retenção da água nos solos. Embrapa Instrumentação Agropecuária, São Carlos (Embrapa Instrumentação Agropecuária. Comunicado Técnico, 61)

    Google Scholar 

  • Vaz CMP, Iossi M, Naime J, Macedo Á, Reichert JM, Reinert DJ, Cooper M (2005) Validation of the Arya and Paris water retention model for Brazilian soils. Soil Sci Soc Am J 69(3):577–583

    CAS  Google Scholar 

  • Veihmeyer FJ, Hendrickson AH (1927) The relation of soil moisture to cultivation and plant growth. In: Proceedings of the 1st international congress of soil science, Washington, 3, pp 498–513

    Google Scholar 

  • Vereecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci 148:389–403

    Google Scholar 

  • Vereecken H, Diels J, Vanorshoven J, Feyen J, Bouma J (1992) Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci Soc Am J 56:1371–1378

    Google Scholar 

  • Vereecken H, Weynants M, Javaux M, Pachepsky Y, Schaap YMG, Van Genuchten MT (2010) Using pedotransfer functions to estimate the Van Genuchten–Mualem soil hydraulic properties: a review. Soil Science Society of America. Vadose Zone J 9:795–820

    Google Scholar 

  • Weynants M, Vereecken H, Javaux M (2009) Revisiting Vereecken pedotransfer functions: introducing a closed-form hydraulic model. Vadose Zone J Madison 8(1):102–123. In: Soils: An Australian Viewpoint, 499–530. Division of Soils, CSIRO, CSIRO: Melbourne

    Google Scholar 

  • Williams J, Prebble RE, Williams WT, Higgnet CT (1983) The influence of texture, structure and clay mineralogy on the soil moisture characteristic. Aust J Soil Res 21:15–32

    Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legats DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res Oceans 90:8995–9005

    Google Scholar 

  • Wösten JHM, Bannink MH, De Gruijter JJ, Bouma J (1986) A procedure to identify different groups of hydraulic-conductivity and moisture-retention curves for soil horizons. J Hydrol 86:133–145

    Google Scholar 

  • Wösten JHM, Finke PA, Jansen MJW (1995) Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227–237

    Google Scholar 

  • Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185

    Google Scholar 

  • Wösten JHM, Pachepsky Y, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150

    Google Scholar 

  • Zinn YL, Lal R, Resck DVS (2005) Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127:168–173

    CAS  Google Scholar 

  • Zinn YL, Guerra AR, Da Silva AC, Marques JJ, Oliveira GC, Curi N (2012) Perfis de carbono orgânico do solo nas regiões sul e serra do espinhaço meridional, Minas Gerais: modelagem em profundidade. Rev Bras Cienc Solo 36:1395–1406

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alexandre Ferreira do Nascimento and José Coelho de Araújo Filho for their comments and corrections that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Hugo Cezar Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barros, A.H.C., de Jong van Lier, Q. (2014). Pedotransfer Functions for Brazilian Soils. In: Teixeira, W., Ceddia, M., Ottoni, M., Donnagema, G. (eds) Application of Soil Physics in Environmental Analyses. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-06013-2_6

Download citation

Publish with us

Policies and ethics