Skip to main content

Hydropedology: Linking Dynamic Soil Properties with Soil Survey Data

  • Chapter
  • First Online:
Application of Soil Physics in Environmental Analyses

Part of the book series: Progress in Soil Science ((PROSOIL))

  • 2328 Accesses

Abstract

Hydropedology is an intertwined branch of soil science and hydrology that provides a useful framework for connecting dynamics soil properties with soil survey data. Five categories of pedotransfer functions (PTFs) are illustrated in this chapter for estimating soil organic carbon, bulk density, and Ksat based on (1) fundamental relationships, (2) essential soil variables, (3) class variables, (4) topo- or geo-rectifications, and (5) climate or land use adjustments. Some outlooks are then discussed for enhancing PTFs developments and applications, including some guidelines for developing a dynamic soil properties database alongside traditional soil survey database as well as hydropedoinformatics for integrated soil-landscape analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WA (1973) The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J Soil Sci 24:10–17

    Google Scholar 

  • Adhikary PP, Chakraborty D, Kalra N, Sachdev CB, Patra AK, Kumar S, Tomar RK, Chandna P, Raghav D, Agrawal K, Sehgal M (2008) Pedotransfer functions for predicting the hydraulic properties of Indian soils. Aust J Soil Res 46:476–484

    Google Scholar 

  • Ahuja LR, Naney JW, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699–702

    Google Scholar 

  • Ahuja LR, Cassel DK, Bruce RR, Barnes BB (1989) Evaluation of spatial-distribution of hydraulic conductivity using effective porosity data. Soil Sci 148:404–411

    Google Scholar 

  • Aimrun W, Amin MSM (2009) Pedo-transfer function for saturated hydraulic conductivity of lowland paddy soils. Paddy Water Environ 7:217–225

    Google Scholar 

  • Alexander EB (1980) Bulk densities of California soils in relation to other soil properties. Soil Sci Soc Am J 44:689

    Google Scholar 

  • Alexander EB (1989) Bulk density equations for southern Alaska soils. Can J Soil Sci 69:177–180

    Google Scholar 

  • Arnold RW, Wilding LP (1991) The need to quantify spatial variability. In: Mausbach MJ, Wilding LP (eds) Spatial variabilities of soils and landforms, SSSA special publication #28. Soil Science Society of America, Inc., Madison, pp 1–8

    Google Scholar 

  • Arrington KE, Ventura SJ, Norman JM (2013) Predicting saturated hydraulic conductivity for estimating maximum soil infiltration rates. Soil Sci Soc Am J 77:748–758

    CAS  Google Scholar 

  • Arya LM, Paris JF (1981) A physico-empirical model to predict the soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci Soc Am J 45:218–227

    Google Scholar 

  • Arya LM, Leij FJ, van Genuchten MT, Shouse PJ (1999) Scaling parameter to predict the soil water characteristics from particle-size distribution data. Soil Sci Soc Am J 63:510–519

    CAS  Google Scholar 

  • Balland V, Pollacco JAP, Arp PA (2008) Modeling soil hydraulic properties for a wide range of soil conditions. Ecol Model 219:300–316

    Google Scholar 

  • Batjes NH (1996) Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma 71:31–52

    Google Scholar 

  • Batjes NH (2008) ISRIC-WISE harmonized global soil profile dataset (ver 3.1). Report 2008/02, ISRIC – World Soil Information, Wageningen (with dataset)

    Google Scholar 

  • Benites VM, Machado PLOA, Fidalgo ECC, Coelho MR, Madari BE (2007) Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma 139:90–97

    Google Scholar 

  • Bernoux M, Cerri C, Arrouays D, Jolivet C (1998) Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Sci Soc Am J 62:743

    CAS  Google Scholar 

  • Bouma J (1989) Using soil survey data for quantitative land evaluation. Adv Soil Sci 9:177–213

    Google Scholar 

  • Bouma J, van Lanen HAJ (1987) Transfer functions and threshold values: from soil characteristics to land qualities. In: Beek KJ et al (ed) Proc. ISSS/SSSA workshop on quantified land evaluation. Washington, DC. 27 Apr–2 May 1986. Int. Inst. for Aerospace Surv. and Earth Sci. Publ. no. 6. ITC Publ. Enschede, The Netherlands. pp 106–110

    Google Scholar 

  • Brady NC, Weil RR (2004) Elements of the nature and properties of soils, 2nd edn. Pearson-Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brahim N, Bernoux M, Gallali T (2012) Pedotransfer functions to estimate soil bulk density for Northern Africa: Tunisia case. J Arid Environ 81:77–83

    Google Scholar 

  • Brakensiek DL, Rawls WJ, Stephenson GR (1984) Modifying SCS hydrologic groups and curve numbers for rangeland soils. ASAE paper no. PNR-84203, St. Joseph

    Google Scholar 

  • Brown G (1954) Soil morphology and mineralogy: a qualitative study of some gleyed soils from North-west England. J Soil Sci 5:145–155

    CAS  Google Scholar 

  • Buol SW, Southard RJ, Graham RC, McDaniel PA (2001) Soil genesis and classification, 5th edn. Iowa State University Press, Ames

    Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Schimel DS, Flach K (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci Soc Am J 53:800–805

    Google Scholar 

  • Burrough P, McDonnell R (1998) Principles of geographic information systems. Oxford University Press, Oxford

    Google Scholar 

  • Calhoun FG, Calhoun FG, Smeck NE, Slater BL, Bigham JM (2001) Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data. Soil Sci Soc Am J 65:811

    CAS  Google Scholar 

  • Campbell GS, Shiozawa S (1994) Prediction of hydraulic properties of soils using particle size distribution and bulk density data. In: Van Genuchten MT et al (eds) Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 317–328

    Google Scholar 

  • Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of the relationships of soil-moisture characteristics to the physical-properties of soils. Water Resour Res 20:682–690

    Google Scholar 

  • Curtis RO, Post BW (1964) Estimating bulk density from organic-matter content in some Vermont forest soils1. Soil Sci Soc Am J 28:285–286

    Google Scholar 

  • Dane JH, Puckett W (1994) Field soil hydraulic properties based on physical and mineralogical information. In: Van Genuchten MT et al (eds) Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 317–328

    Google Scholar 

  • Daniels RB (1988) Pedology, a field or laboratory science? Soil Sci Soc Am J 52:1518–1519

    Google Scholar 

  • De Vos B, Van Meirvenne M, Quataert P, Deckers J (2005a) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69:500

    Google Scholar 

  • De Vos B, Vandecasteele B, Deckers J, Muys B (2005b) Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils. Commun Soil Sci Plant Anal 36:2899–2921

    Google Scholar 

  • Drew LA (1973) Bulk density estimation based on organic matter content of some Minnesota soils. Sci. Jour. Ser. Paper No. 8333 of the University of Minnesota. Agr. Expt. Sta

    Google Scholar 

  • Droogers P, Bouma J (1997) Soil survey input in exploratory modeling of sustainable soil management practices. Soil Sci Soc Am J 61:1704–1710

    CAS  Google Scholar 

  • FAO/IIASA/ISRIC/ISS-CAS/JRC (2012) Harmonized world soil database (version 1.2). FAO/IIASA, Rome/Laxenburg

    Google Scholar 

  • Federer CA, Turcotte DE, Smith CT (1993) The organic fraction–bulk density relationship and the expression of nutrient content in forest soils. Can J Forest Res 23:1026–1032

    CAS  Google Scholar 

  • Ferrer-Julia M, Estrela-Monreal T, Sanchez del Corral-Jimenez A, Garcia-Melendez E (2004) Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma 123:257–277

    Google Scholar 

  • Fox CA (1985) A morphometric system for describing the micromorphology of organic soils and organic layers: further quantitative and qualitative characterization. Can J Soil Sci 65:695–706

    Google Scholar 

  • Franzmeier DP (1991) Estimation of hydraulic conductivity from effective porosity data for some Indiana soils. Soil Sci Soc Am J 55:1801–1803

    Google Scholar 

  • Goryachkin SV (2005) Studies of the soil cover patterns in modern soil science: approaches and tendencies. Eurasian Soil Sci 38:1301–1308

    Google Scholar 

  • Gosselink JG, Gosselink JG, Hatton R, Hopkinson CS (1984) Relationship of organic carbon and mineral content to bulk density in Louisiana marsh soils. Soil Sci 137:177–180

    Google Scholar 

  • Grossman RB, Harms DS, Seybold CA, Herrick JE (2001) Coupling use-dependent and use-invariant data for soil quality evaluation in the United States. J Soil Water Conserv 56:63–68

    Google Scholar 

  • Guo P-T, Wu W, Sheng Q-K, Li M-F, Liu H-B, Wang Z-Y (2013) Prediction of soil organic matter using artificial neural network and topographic indicators in hilly areas. Nutr Cycl Agroecosyst 95:333–344

    Google Scholar 

  • Han G-Z, Zhang G-L, Gong Z-T, Wang G-F (2012) Pedotransfer functions for estimating soil bulk density in China. Soil Sci 177:158–164

    CAS  Google Scholar 

  • Harrison AF, Bocock KL (1981) Estimation of soil bulk-density from loss-on-ignition values. J Appl Ecol 18:919–927

    Google Scholar 

  • Haverkamp R, Parlange JY (1986) Predicting the water-retention curve from particle size distribution: 1. Sandy soils without organic matter. Soil Sci 142:325–339

    Google Scholar 

  • Heuscher SA, Brandt CC, Jardine PM (2005) Using soil physical and chemical properties to estimate bulk density. Soil Sci Soc Am J 69:51–56

    CAS  Google Scholar 

  • Heuvelink GBM, Webster R (2001) Modelling soil variation: past, present, and future. Geoderma 100:269–301

    Google Scholar 

  • Hole FD (1976) Soils of Wisconsin, Wisconsin Geology National History Survey Bulletin 87, Soils Series. 62. University of Wisconsin Press, Madison

    Google Scholar 

  • Hollis JM, Hannam J, Bellamy PH (2012) Empirically-derived pedotransfer functions for predicting bulk density in European soils. Eur J Soil Sci 63:96–109

    CAS  Google Scholar 

  • Huntington TG, Huntington TG, Johnson CE, Johnson AH, Siccama TG (1989) Carbon, organic matter, and bulk density relationships in a forested spodosol. Soil Sci 148:380–386

    CAS  Google Scholar 

  • Jabro JD (1992) Estimation of saturated hydraulic conductivity of soils from particle-size distribution and bulk-density data. Trans Asae 35:557–560

    Google Scholar 

  • Jalabert SSM, Martin MP, Renaud JP, Boulonne L, Jolivet C, Montanarella L, Arrouays D (2010) Estimating forest soil bulk density using boosted regression modelling. Soil Use Manage 26:516–528

    Google Scholar 

  • Jeffrey DW (1970) A note on the use of ignition loss as a means for the approximate estimation of soil bulk density. J Ecol 58:297–299

    Google Scholar 

  • Jenny H (1941) Factors of soil formation – a system of quantitative pedology. McGraw-Hill, New York

    Google Scholar 

  • Katterer T, Andren O, Jansson P (2006) Pedotransfer functions for estimating plant available water and bulk density in Swedish agricultural soils. Acta Agric Scand Sect B – Plant Soil Sci 56:263–276

    Google Scholar 

  • Kaur R, Kumar S, Gurung HP (2002) A pedo-transfer function (PTF) for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Soil Res 40:847–858

    Google Scholar 

  • Kim H, Anderson SH, Motavalli PP, Gantzer CJ (2010) Compaction effects on soil macropore geometry and related parameters for an arable field. Geoderma 160:244–251

    Google Scholar 

  • Kumar S, Anderson SH, Udawatta RP (2010) Agroforestry and grass buffer influences on macropores measured by computed tomography under grazed pasture systems. Soil Sci Soc Am J 74:203–212

    CAS  Google Scholar 

  • Lagacherie P, McBratney AB, Voltz M (eds) (2007) Digital soil mapping. An introductory perspective. Developments in soil science, vol 31. Elsevier, Amsterdam

    Google Scholar 

  • Leij F, Alves WJ, van Genuchten MTh, Williams JR (1996) The UNSODA unsaturated soil hydraulic database. User’s manual version 1.0. EPA/600/R-96/095. National Risk Management Laboratory, Office of Research and Development, Cincinnati, OH

    Google Scholar 

  • Leonavičiutė N (2000) Predicting soil bulk and particle densities by pedotransfer functions from existing soil data in Lithuania. Geografijos metrasˇtis 33:317–330

    Google Scholar 

  • Li Y, Chen D, White RE, Zhu A, Zhang J (2007) Estimating soil hydraulic properties of Fengqiu County soils in the North China plain using pedo-transfer functions. Geoderma 138:261–271

    Google Scholar 

  • Lilly A (1997) A description of the HYPRES database (Hydraulic properties of European soils). pp 161–184. In: Bruand A, Duval O, Wösten JHM, Lilly A (eds) The use of pedotransfer functions in soil hydrology research. Proc. second workshop of the project using existing soil data to derive hydraulic parameters for simulation modelling in environmental studies and in land use planning. Orleans, 10–12 Oct 1996. pp 161–184

    Google Scholar 

  • Lilly A, Lin HS (2004) Using soil morphological attributes and soil structure in pedotransfer functions. In: Pachepsky Y, Rawls W (eds) Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam, pp 115–142

    Google Scholar 

  • Lin HS (2003) Hydropedology: bridging disciplines, scales, and data. Vadose Zone J 2:1–11

    CAS  Google Scholar 

  • Lin HS (2011) Three principles of soil change and pedogenesis in time and space. Soil Sci Soc Am J 75:2049–2070

    CAS  Google Scholar 

  • Lin HS (ed) (2012) Hydropedology: synergistic integration of soil science and hydrology. Academic/Elsevier, Amsterdam

    Google Scholar 

  • Lin HS, McInnes KJ, Wilding LP, Hallmark CT (1999) Effects of soil morphology on hydraulic properties: II. Hydraulic pedotransfer functions. Soil Sci Soc Am J 63:955–961

    CAS  Google Scholar 

  • Lin HS, Bouma J, Wilding L, Richardson J, Kutilek M, Nielsen D (2005) Advances in hydropedology. Adv Agron 85:1–89

    Google Scholar 

  • Lin HS, Bouma J, Pachepsky Y, Western A, Thompson J, van Genuchten MT, Vogel H, Lilly A (2006) Hydropedology: synergistic integration of pedology and hydrology. Water Resour Res 42:W05301. doi:10.1029/2005WR004085

    Google Scholar 

  • Lin HS, Brook E, McDaniel P, Boll J (2008) Hydropedology and surface/subsurface runoff processes. In: Anderson MG (Editor-in-Chief) Encyclopedia of hydrologic sciences. Wiley. doi:10.1002/0470848944.hsa306

  • Luo LF, Lin HS, Li SC (2010) Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J Hydrol 393:53–64

    Google Scholar 

  • Manrique LA, Jones CA (1991) Bulk density of soils in relation to soil physical and chemical properties. Soil Sci Soc Am J 55:476–481

    CAS  Google Scholar 

  • Martin MP, Lo Seen D, Boulonne L, Jolivet C, Nair KM, Bourgeon G, Arrouays D (2009) Optimizing pedotransfer functions for estimating soil bulk density using boosted regression trees. Soil Sci Soc Am J 73:485–493

    CAS  Google Scholar 

  • McBratney AB, Minasny B (2004) Soil inference systems. In: Pachepsky Y, Rawls W (eds) Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam, pp 323–346

    Google Scholar 

  • McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil inference systems. Geoderma 109:41–73

    Google Scholar 

  • McBratney AB, Santos MLM, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52

    Google Scholar 

  • McKenzie NJ, Jacquier DW (1997) Improving the field estimation of saturated hydraulic conductivity in soil survey. Aust J Soil Res 35:803–825

    Google Scholar 

  • McKenzie NJ, Ryan PJ (1999) Spatial prediction of soil properties using environmental correlation. Geoderma 89:67–94

    Google Scholar 

  • Merdun H, Cinar O, Meral R, Apan M (2006) Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res 90:108–116

    Google Scholar 

  • Minasny B, McBratney AB (2000) Evaluation and development of hydraulic conductivity pedotransfer functions for Australian soil. Aust J Soil Res 38:905–926

    Google Scholar 

  • Minasny B, McBratney AB, Bristow KL (1999) Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93:225–253

    Google Scholar 

  • Minasny B, McBratney AB, Mendonça-Santos ML, Odeh IOA, Guyon B (2006) Prediction and digital mapping of soil carbon storage in the lower Namoi valley. Soil Res 44:233–244

    CAS  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452

    Google Scholar 

  • Mualem Y (1986) Hydraulic conductivity of unsaturated soils: predictions and formulas. In: Klute A (ed) Methods of soil analysis. Part 1, 2nd edn. Agronomy Society of America, Madison, pp 799–823

    Google Scholar 

  • Nanko K, Ugawa S, Hashimoto S, Imaya A, Kobayashi M, Sakai H, Ishizuka S, Miura S, Tanaka N, Takahashi M, Kaneko S (2014) A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma 213:36–45

    Google Scholar 

  • Nordt LC, Jacob JS, Wilding LP (1991) Quantifying map unit composition for quality control in soil survey. In: Mausbach MJ, Wilding LP (eds) Spatial variabilities of soils and landforms, SSSA special publication #28. Soil Science Society of America, Inc., Madison, pp 183–197

    Google Scholar 

  • O’Connell DA, Ryan PJ (2002) Prediction of three key hydraulic properties in a soil survey of a small forested catchment. Aust J Soil Res 40:191–206

    Google Scholar 

  • Ocean County Soil Conservation District (OCSCD), Schnabel Engineering Associates, Inc., USDA Natural Resources Conservation Service (2001) Impact of soil disturbance during construction on bulk density and infiltration in ocean county, New Jersey. Ocean County Soil Conservation District, Ocean County. http://www.soildistrict.org/

  • Pachepsky Y, Rawls WJ (1999) Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci Soc Am J 63:1748–1757

    CAS  Google Scholar 

  • Pachepsky Y, Rawls W (eds) (2004) Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Patil NG, Rajput GS, Nema RK, Singh RB (2010) Predicting hydraulic properties of seasonally impounded soils. J Agric Sci 148:159–170

    Google Scholar 

  • Périé C, Ouimet R (2008) Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can J Soil Sci 88:315–325

    Google Scholar 

  • Prevost M, Marcel P (2004) Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Soil Sci Soc Am J 68:943

    CAS  Google Scholar 

  • Puckett WE, Dane JH, Hajek BF (1985) Physical and mineralogical data to determine soil hydraulic-properties. Soil Sci Soc Am J 49:831–836

    Google Scholar 

  • Pulleman MM, Bouma J, van Essen EA, Meijles EW (2000) Soil organic matter content as a function of different land use history. Soil Sci Soc Am J 64:689–693

    CAS  Google Scholar 

  • Rawls WJ (1983) Estimating soil bulk density from particle size analysis and organic matter content. Soil Sci 135:123–125

    Google Scholar 

  • Rawls WJ, Pachepsky YA (2002) Soil consistence and structure as predictors of water retention. Soil Sci Soc Am J 66:1115–1126

    CAS  Google Scholar 

  • Richter DD, Mobley ML (2009) Monitoring earth’s critical zone. Science 326:1067–1068

    CAS  PubMed  Google Scholar 

  • Rode AA (1947) The Soil Forming Process and Soil Evolution. Israel Program for Scientific Translations, Jerusalem (Translated into English by J.S. Joffe, 1961.)

    Google Scholar 

  • Saini GR (1966) Organic matter as a measure of bulk density of soil. Nature (Lond) 210:1295–1296

    Google Scholar 

  • Salchow E, Lal R, Fausey NR, Ward A (1996) Pedotransfer functions for variable alluvial soils in southern Ohio. Geoderma 73:165–181

    Google Scholar 

  • Salifu KFM, Meyer WL, Murchison HG (1999) Estimating soil bulk density from organic matter content, pH, silt and clay. J Trop For 15:112–120

    Google Scholar 

  • Santra P, Das BS (2008) Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. Geoderma 146:439–448

    Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036

    Google Scholar 

  • Schaap MG, Bouten W (1996) Modelling water retention curves of sandy soils using neural networks. Water Resour Res 32:3033–3040

    CAS  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176

    Google Scholar 

  • Schaetzl R, Anderson S (2005) Soil – genesis and geomorphology. Cambridge University Press, Cambridge

    Google Scholar 

  • Sequeira CH, Wills SA, Seybold SA, West LT (2014) Predicting soil bulk density for incomplete databases. Geoderma 213:64–73

    Google Scholar 

  • Shaw JN, West LT, Radcliffe DE, Bosch DD (2000) Preferential flow and pedotransfer functions for transport properties in sandy Kandiudults. Soil Sci Soc Am J 64:670–678

    CAS  Google Scholar 

  • Soil Survey Staff (1993) Soil survey manual. U.S. Dept. Agri. Handbook No. 18. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Sonneveld MPW, Bouma J, Veldkamp A (2002) Refining soil survey information for a Dutch soil series using land use history. Soil Use Manage 18:157–163

    Google Scholar 

  • Stewart VI, Adams WA, Abdulla HH (1970) Quantitative pedological studies on soils derived from Silurian mudstones. J Soil Sci 21:248–255

    Google Scholar 

  • Targulian VO (2005) Elementary pedogenic processes. Eurasian Soil Sci 38:1255–1264

    Google Scholar 

  • Targulian VO, Goryachkin SV (2004) Soil memory: types of record, carriers, hierarchy and diversity. Revista mexicana de ciencias geológicas 21:1–8

    Google Scholar 

  • Tietje O, Hennings V (1996) Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma 69:71–84

    Google Scholar 

  • Tugel AJ, Herrick JE, Brown JR, Mausbach MJ, Puckett W, Hipple K (2005) Soil change, soil survey, and natural resources decision making: a blueprint for action. Soil Sci Soc Am J 69:738–747

    CAS  Google Scholar 

  • Udawatta RR, Anderson SH, Gantzer CJ, Garrett HE (2008) Influence of prairie restoration on CT-measured soil pore characteristics. J Environ Qual 37:219–228

    CAS  PubMed  Google Scholar 

  • USDA-Natural Resources Conservation Services (NRCS) (1994) State Soil Geographic (STATSGO) data base: data use information. National Coil Survey Center, Lincoln

    Google Scholar 

  • USDA-Natural Resources Conservation Services (NRCS) (1995) Soil Survey Geographic (SSURGO) data base: data use information. National Coil Survey Center, Lincoln

    Google Scholar 

  • van Genuchten MTh, Feike L, Wu L (eds) (1999a) Proceedings of the international workshop on characterization and measurement of the hydraulic properties of unsaturated porous media, Riverside

    Google Scholar 

  • van Genuchten MT, Schaap MG, Mohanty BP, Simunek J, Leij FJ (1999b) Modeling flow and transport processes at the local scale. In: Feyen J, Wiyo K (eds) Modelling of transport process in soils at various scales in time and space. Wageningen Pers, Wageningen, pp 23–45

    Google Scholar 

  • Vereecken H, Maes J, Feyen J (1990) Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci 149:1–12

    Google Scholar 

  • Verhagen J, Bouma J (1998) Defining threshold values for residual N-levels. Geoderma 85:199–213

    CAS  Google Scholar 

  • Vogel HJ, Roth K (2003) Moving through scales of flow and transport in soil. J Hydrol 272:95–106

    Google Scholar 

  • Wang Y, Shao M a, Liu Z (2012) Pedotransfer functions for predicting soil hydraulic properties of the Chinese Loess Plateau. Soil Sci 177:424–432

    CAS  Google Scholar 

  • Wosten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185

    Google Scholar 

  • Wosten JHM, Veerman GJ, de Groot WJM, Stolte J (2001) Water retention and hydraulic conductivity characteristics of top and subsoils of the Netherlands: the staring-series (In Dutch.) ALTERRA Report Nr.153. ALTERRA, Wageningen

    Google Scholar 

  • Wysocki D, Schoeneberger P, LaGarry H (2000) Geomorphology of soil landscapes. In: Sumner ME (ed.-in-chief) Handbook of soil science. CRC Press, Boca Raton, pp E-5–E-39

    Google Scholar 

  • Yu HL, Yang PL, Lin HS, Ren SM, He X (2014) Effects of sodic soil reclamation using flue gas desulphurization gypsum on soil pore characteristics, bulk density, and saturated hydraulic conductivity. Soil Sci Soc Am J (In press). doi:10.2136/sssaj2013.08.0352

  • Zhu AX, Hudson B, Burt J, Lubich K, Simonson D (2001) Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Sci Soc Am J 65:1463–1472

    CAS  Google Scholar 

  • Zinn YL, Lal R, Resck DVS (2005) Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127:168–173

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, H., Zhang, W., Yu, H. (2014). Hydropedology: Linking Dynamic Soil Properties with Soil Survey Data. In: Teixeira, W., Ceddia, M., Ottoni, M., Donnagema, G. (eds) Application of Soil Physics in Environmental Analyses. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-06013-2_2

Download citation

Publish with us

Policies and ethics