Skip to main content

Hydraulic Properties and Non-equilibrium Water Flow in Soils

  • Chapter
  • First Online:
Application of Soil Physics in Environmental Analyses

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

Accurate knowledge of hydraulic properties for unsaturated soils is critical in the estimation of soil water fluxes by simulation models that are based on the Richards equation. The purpose of this chapter is to review the characterization of unsaturated soil hydraulic properties for their applicability in models simulating unsaturated water transport. We start with a short review of the fundamentals that lead to the definition of the hydraulic functions in the framework of continuum hydromechanics. Next, we address problems of common parameterizations of hydraulic functions in the critical regions near and at saturation, towards dryness, and on hysteresis. We find that traditional approaches have deficiencies, but recent progress has been significant in particular with respect to including film and corner flow components in the hydraulic conductivity function. The chapter closes with a discussion of the phenomenon of dynamic non-equilibrium in soil water flow, which shows to our opinion toward the need for a paradigm change in the modeling of soil water transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assouline S (2001) A model for soil relative hydraulic conductivity based on the water retention characteristic curve. Water Resour Res 37(2):265–271

    Google Scholar 

  • Assouline S (2004) Correction to “A model of soil relative hydraulic conductivity based on water retention curve characteristics”. Water Resour Res 40(2), W02901

    Google Scholar 

  • Assouline S, Or D (2013) Conceptual and parametric representation of soil hydraulic properties: a review. Vadose Zone J 12(4)

    Google Scholar 

  • Assouline S, Tessier D, Bruand A (1998) A conceptual model of the soil water retention curve. Water Resour Res 34(2):223–231

    Google Scholar 

  • Barenblatt GI (1971) Filtration of two nonmixing fluids in a homogeneous porous medium, Soviet academy Izvestia. Mech Gas Fluids 5:857–864

    Google Scholar 

  • Basile A, Ciollaro G, Coppola A (2003) Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties. Water Resour Res 39:1355

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

    Google Scholar 

  • Børgesen CD, Jacobsen OH, Hansen S, Schaap MG (2006) Soil hydraulic properties near saturation, an improved conductivity model. J Hydrol 324(1):40–50

    Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media, vol 3, Hydrology papers. Colorado State University, Fort Collins, pp 1–27

    Google Scholar 

  • Brutsaert W (1966) Probability laws for pore-size distributions. Soil Sci 101(2):85–92

    Google Scholar 

  • Buckingham E (1907) Studies on the movement of soil moisture. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Burdine NT (1953) Relative permeability calculations from pore size distribution data. Trans Am Inst Min Metall Pet Eng 198:71–77

    Google Scholar 

  • Campbell GS, Shiozawa S (1992) Prediction of hydraulic properties of soils using particle-size distribution and bulk density data. In: van Genuchten MT, Leij FJ, Lund LJ (eds) Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 317–328

    Google Scholar 

  • Childs EC, Collis-George N (1950) The permeability of porous materials. Proc R Soc Lond A Math Phys Sci 201(1066):392–405

    CAS  Google Scholar 

  • Coppola A, Comegna V, Basile A, Lamaddalena N, Severino G (2009) Darcian preferential water flow and solute transport through bimodal porous systems: experiments and modelling. J Contam Hydrol 104(1):74–83

    CAS  PubMed  Google Scholar 

  • Corey AT, Brooks RH (1999) The Brooks-Corey relationships. In: van Genuchten MT, Leij FJ, Wu L (eds) Proceedings of the international workshop on characterization and measurement of the hydraulic properties of unsaturated porous media. University of California, Riverside, pp 13–18

    Google Scholar 

  • Cornelis WM, Khlosi M, Hartmann R, Van Meirvenne M, De Vos B (2005) Comparison of unimodal analytical expressions for the soil-water retention curve. Soil Sci Soc Am J 69(6):1902–1911

    CAS  Google Scholar 

  • Cushman JH (1984) On unifying the concepts of scale, instrumentation, and stochastics in the development of multiphase transport theory. Water Resour Res 20(11):1668–1676

    Google Scholar 

  • d’Hollander EH (1979) Estimation of the pore size distribution from the moisture characteristic. Water Resour Res 15(1):107–112

    Google Scholar 

  • Dane JH, Hopmans JW (2002) Water retention and storage. In: Dane JH, Topp GC (eds) Methods of soil analysis, Part 4, vol 5, Soil Science Society of America book series. SSSA, Madison, pp 739–757, 671–717

    Google Scholar 

  • Dane JH, Wierenga PJ (1975) Effect of hysteresis o the prediction of infiltration, redistribution and drainage of water in a layered soil. J Hydrol 25:229–242

    Google Scholar 

  • Darcy H (1856) Les fontains publiques de la ville de Dijon. Dalmont, Paris

    Google Scholar 

  • Dettmann U, Bechtold M, Frahm E, Tiemeyer B (2014) On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under drying conditions. J Hydrol, in press, doi: 10.1016/j.jhydrol.2014.04.047

  • Diamantopoulos E, Durner W (2012) Dynamic nonequilibrium of water flow in porous media: a review. Vadose Zone J 11(3). http://dx.doi.org/a10.2136/vzj2011.0197

  • Diamantopoulos E, Iden SC, Durner W (2012) Inverse modeling of dynamic non-equilibrium in water flow with an effective approach. Water Resour Res 48:W03503. doi:10.1029/2011WR010717

    Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci Rev 51:33–65

    Google Scholar 

  • Driessen PM, Konijn NT (1992) Land-use systems analysis. Agricultural University, Wageningen

    Google Scholar 

  • Durner W (1991) Vorhersage der hydraulischen Leitfähigkeit strukturierter Böden. PhD thesis. Universität Bayreuth, Bayreuth, pp 1–180

    Google Scholar 

  • Durner W (1992) Predicting the unsaturated hydraulic conductivity using multi-porosity water retention curves. In: van Genuchten MT et al (eds) Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 185–202

    Google Scholar 

  • Durner W (1994) Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res 30(2):211–223. doi:10.1029/93WR02676

    Google Scholar 

  • Durner W, Flühler H (2005) Soil hydraulic properties (Chapter 74). In: Anderson MG, McDonnell JJ (eds) Encyclopaedia of hydrological sciences. Wiley, USA, pp 1089–1102

    Google Scholar 

  • Durner W, Iden SC (2011) Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation. Water Resour Res 47(8):W08526

    Google Scholar 

  • Durner W, Lipsius K (2005) Determining soil hydraulic properties (Chapter 75). In: Anderson MG, McDonnell JJ (eds) Encyclopaedia of hydrological sciences. Wiley, New York, pp 1121–1144

    Google Scholar 

  • Dury O, Fischer U, Schulin R (1998) Dependence of hydraulic and pneumatic characteristics of soils on a dissolved organic compound. J Contam Hydrol 33:39–57

    CAS  Google Scholar 

  • Ewing JA (1881) On the production of transient electric currents in iron and steel conductors by twisting them when magnetized or by magnetizing them when twisted. In: Proceedings of the Royal Society of London, November 17 1881–March 30 1882

    Google Scholar 

  • Farrell DA, Larson WE (1972) Modeling the pore structure of porous media. Water Resour Res 8(3):699–706

    Google Scholar 

  • Fatt I, Dykstra H (1951) Relative permeability studies. Trans Am Inst Min Metall Pet Eng 192:249–256

    Google Scholar 

  • Fayer MJ, Simmons CS (1995) Modified soil water retention functions for all matric suctions. Water Resour Res 31(5):1233–1238. doi:10.1029/95WR00173

    Google Scholar 

  • Flühler H, Durner W, Flury M (1996) Lateral mixing processes – a key for understanding the solute transport regimes. Geoderma 70:165–183

    Google Scholar 

  • Fredlund DG, Xing AQ (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532. doi:10.1139/t94-061

    Google Scholar 

  • Friedmann S (1999) Dynamic contact angle explanation of flow rate-dependent saturation-pressure relationships during transient liquid flow in unsaturated porous media. J Adhes Sci Technol 13:1495–1518

    Google Scholar 

  • Fujimaki H, Inoue M (2003) A transient evaporation method for determining soil hydraulic properties at low pressure. Vadose Zone J 2(3):400–408. doi:10.2113/2.3.400

    Google Scholar 

  • Funk M (2012) Hysteresis der Feuchtespeicherung in porösen Materialien. PhD dissertation, Institut für Bauklimatik, TU Dresden, Dresden

    Google Scholar 

  • Gardner WR (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232

    Google Scholar 

  • Gerke HH (2006) Preferential flow descriptions for structured soils. J Plant Nutr Soil Sci 169(3):382–400

    CAS  Google Scholar 

  • Gerke HH, van Genuchten M (1993) A dual porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res 29(2):305–319

    CAS  Google Scholar 

  • Gillham RW, Klute A, Heermann DF (1976) Hydraulic properties of a porous medium: measurement and empirical representation. Soil Sci Soc Am J 40(2):203–207

    Google Scholar 

  • Gillham RW, Klute A, Heermann DF (1979) Measurement and numerical simulation of hysteretic flow in a heterogeneous porous medium. Soil Sci Soc Am J 43:1061–1067

    Google Scholar 

  • Globus AM (1987) Soil-hydrophysical supporting of the agroecological mathematical models (in Russian). Hydrometeoizdat Press, Leningrad

    Google Scholar 

  • Goss K-U, Madliger M (2007) Estimation of water transport based on in situ measurements of relative humidity and temperature in a dry Tanzanian soil. Water Resour Res 43:W05433. doi:10.1029/2006WR005197

    Google Scholar 

  • Groenevelt PH, Grant CD (2004) A new model for the soil-water retention curve that solves the problem of residual water contents. Eur J Soil Sci 55(3):479–485. doi:10.1111/j.1365-2389.2004.00617.x

    Google Scholar 

  • Haines WB (1930) Studies in the physical properties of soil: V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J Agric Sci 20:97–116

    CAS  Google Scholar 

  • Harris CC, Morrow NR (1964) Pendular moisture in packings of equal spheres. Nature 203:706–708

    Google Scholar 

  • Hassanizadeh SM, Celia MA, Dahle HK (2002) Dynamic effects in capillary pressure–saturation relationships and its impact on unsaturated flow. Vadose Zone J 1:38–57

    Google Scholar 

  • Henry EJ, Smith JE, Warrick AW (2001) Surfactant effects on unsaturated flow in porous media with hysteresis: horizontal column experiments and numerical modeling. J Hydrol 245:73–88

    CAS  Google Scholar 

  • Hilfer R (2006a) Macroscopic capillarity and hysteresis for flow in porous media. Phys Rev E 73(1):016307

    CAS  Google Scholar 

  • Hilfer R (2006b) Capillary pressure, hysteresis and residual saturation in porous media. Phys Stat Mech Appl 359:119–128

    CAS  Google Scholar 

  • Hillel D (1980) Fundamentals of soil physics. Academic Press, New York, 413

    Google Scholar 

  • Hoa NT, Gaudu R, Thirriot C (1977) Influence of the hysteresis effect on transient flows in saturated–unsaturated porous media. Water Resour Res 13(6):992–996

    Google Scholar 

  • Hoffmann-Riem H, van Genuchten MT, Flühler H (1999) General model for the hydraulic conductivity of unsaturated soils. In: van Genuchten MT, Leij FJ, Wu L (eds) Proceedings of the international workshop on characterization und measurement of the hydraulic properties of unsaturated porous media. University of California, Riverside, pp 31–42

    Google Scholar 

  • Hogarth W, Hopmans JW, Parlange JY, Haverkamp R (1988) Application of a simple soil-water hysteresis model. J Hydrol 98:21–29

    Google Scholar 

  • Hopmans JW, Šimůnek J, Romano N, Durner W (2002) Inverse methods. In: Dane JH, Topp GC (eds) Methods of soil analysis, part 4: physical methods, vol 5, 4th edn, Soil Science Society of America book series. American Society of Agronomy and Soil Science Society of America, Madison, pp 963–1008

    Google Scholar 

  • Hunt AG (2004) Comparing van Genuchten and percolation theoretical formulations of the hydraulic properties of unsaturated media. Vadose Zone J 3(4):1483–1488

    Google Scholar 

  • Hunt AG, Skinner TE (2005) Hydraulic conductivity limited equilibration. Vadose Zone J 4(1):145–150

    Google Scholar 

  • Hunt AG, Ewing RP, Horton R (2013) What’s wrong with soil physics? Soil Sci Soc Am J 77(6):1877–1887

    CAS  Google Scholar 

  • Hutson JL, Cass A (1987) A retentivity function for use in soil–water simulation models. Soil Sci 38(1):105–113

    Google Scholar 

  • Iden SC, Durner W (2007) Free form estimation of the unsaturated soil hydraulic properties by inverse modeling using global optimization. Water Resour Res 43(7):W07451. doi:2006WR005845

    Google Scholar 

  • Ippisch O, Vogel HJ, Bastian P (2006) Validity limits for the van Genuchten–Mualem model and implications for parameter estimation and numerical simulation. Adv Water Resour 29(12):1780–1789

    Google Scholar 

  • Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58(3):523–546

    Google Scholar 

  • Jaynes DB (1992) Estimating hysteresis in the soil water retention function. In: van Genuchten MT, Leij FJ, Lund LJ (eds) Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 219–232

    Google Scholar 

  • Khlosi M, Cornelis WM, Gabriels D, Sin G (2006) Simple modification to describe the soil water retention curve between saturation and oven dryness. Water Resour Res 42:W11501. doi:10.1029/2005WR004699

    Google Scholar 

  • King LG (1965) Description of soil characteristics for partially saturated flow. Soil Sci Soc Am J 29(4):359–362

    Google Scholar 

  • Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A (ed) Methods of soil analysis, part 1, vol 9, 2nd edn, Agronomy monographs. ASA and SSSA, Madison, pp 687–734

    Google Scholar 

  • Kool JB, Parker JC (1987) Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour Res 23(1):105–114

    Google Scholar 

  • Kosugi K (1994) Three-parameter lognormal distribution model for soil water retention. Water Resour Res 30(4):891–901

    Google Scholar 

  • Kosugi K (1996) Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour Res 32(9):2697–2703. doi:10.1029/96WR01776

    Google Scholar 

  • Kosugi K (1999) General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci Soc Am J 63(2):270–277

    CAS  Google Scholar 

  • Kosugi K, Hopmans JW, Dane JH (2002) Parametric models. In: Dane JH, Topp GC (eds) Methods of soil analysis, Part 4, vol 5, Soil Science Society of America book series. SSSA, Madison, pp 739–757

    Google Scholar 

  • Kutilek M, Nielsen D (1994) Soil hydrology. Catena Verlag, Cremlingen-Destedt, 370 pp

    Google Scholar 

  • Laliberte GE (1969) A mathematical function for describing capillary pressure-desaturation data. Hydrol Sci J 14(2):131–149

    Google Scholar 

  • Lebeau M, Konrad JM (2010) A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 46(12): W12554. doi:10.1029/2010WR009092

  • Lehmann P, Stauffer F, Hinz C, Dury O, Flühler H (1999) Effect of hysteresis on water flow in a sand column with a fluctuating capillary fringe. J Contam Hydrol 33:81–100

    Google Scholar 

  • Leij FJ, Russell WB, Lesch SM (1997) Closed form expressions for water retention and conductivity data. Ground Water 35:848–858. doi:10.1111/j.1745-6584.1997.tb00153.x

    CAS  Google Scholar 

  • Lenhard RJ, Parker JC, Kaluarachchi JJ (1991) Comparing simulated and experimental hysteretic two-phase transient fluid flow phenomena. Water Resour Res 27:2113–2124

    Google Scholar 

  • Luckner L, van Genuchten MT, Nielsen DR (1991) Reply to Nimmo’s “comment on the treatment....”. Water Resour Res 27(4):661–662

    Google Scholar 

  • Mallants D, Tseng PH, Toride N, Tinunerman A, Feyen J (1997) Evaluation of multimodal hydraulic functions in characterizing a heterogeneous field soil. J Hydrol 195(1):172–199

    Google Scholar 

  • McKee CR, Bumb AC (1984) The importance of unsaturated flow parameters in designing a monitoring system for hazardous wastes and environmental emergencies. In: Proceedings of Hazardous Materials Control Research Institute national conference, Houston, pp 50–58

    Google Scholar 

  • McKee CR, Bumb AC (1987) Flow-testing coalbed methane production wells in the presence of water and gas. SPE Form Eval 2(4):599–608

    Google Scholar 

  • McNamara H (2014) An estimate of energy dissipation due to soil-moisture hysteresis. Water Resour Res 50:725–735. doi:10.1002/2012WR012634

    Google Scholar 

  • Mirzaei M, Das BS (2007) Dynamic effects in capillary pressure-saturation relationships for two-phase flow in 3D porous media: implication of micro-heterogeneities. Chem Eng Sci 62:1927–1947

    CAS  Google Scholar 

  • Mirzaei M, Das BS (2013) Experimental investigation of hysteretic dynamic effect in capillary pressure-saturation relationship for two phase-flow in porous media. AIChE J 59(10):3958–3974

    CAS  Google Scholar 

  • Mitchell RJ, Mayer AS (1998) The significance of hysteresis in modeling solute transport in unsaturated porous media. Soil Sci Soc Am J 62:1506–1512

    CAS  Google Scholar 

  • Morel-Seytoux HJ, Nimmo JR (1999) Soil water retention and maximum capillary drive from saturation to oven dryness. Water Resour Res 35(7):2031–2041. doi:10.1029/1999WR900121

    Google Scholar 

  • Mualem Y (1974) A conceptual model of hysteresis. Water Resour Res 10(3):514–520

    Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. doi:10.1029/WR012i003p00513

    Google Scholar 

  • Mualem Y (1984) A modified dependent-domain theory of hysteresis. Soil Sci 137(5):283–291

    Google Scholar 

  • Mualem Y (1986) Hydraulic conductivity of unsaturated soils: prediction and formulas. In: Klute A (ed) Methods of soil analysis: part 1. Physical and mineralogical methods. American Society of Agronomy: Soil Science Society of America, Madison, pp 799–823

    Google Scholar 

  • Mualem Y, Beriozkin A (2009) General scaling rules of the hysteretic water retention function based on Mualem’s domain theory. Eur J Soil Sci 60:652–661

    Google Scholar 

  • Nemes A, Schaap MG, Leij FJ, Wösten JHM (2001) Description of the unsaturated soil hydraulic database UNSODA version 2.0. J Hydrol 251(3–4):151–162. doi:10.1016/S0022-1694(01)00465-6

    Google Scholar 

  • Nimmo JR (1991) Comment on the treatment of residual water content in “A consistent set of parametric models for the two-phase flow of miscible fluid in the subsurface” by L. Luckner et al., 1989. Water Resour Res 27:661–662. doi:10.1029/91WR00165

    Google Scholar 

  • Orr FM, Scriven LE, Rivas AP (1975) Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech 67(4):723–742

    Google Scholar 

  • Othmer H, Diekkrüger B, Kutilek M (1991) Bimodal porosity and unsaturated hydraulic conductivity. Soil Sci 152(3):139–150. doi:10.1097/00010694-199109000-00001

    Google Scholar 

  • Pachepsky YA, Shcherbakov RA, Korsunskaya LP (1995) Scaling of soil water retention using a fractal model. Soil Sci 159(2):99–104

    CAS  Google Scholar 

  • Parlange J-Y (1976) Capillary hysteresis and relationship between drying and wetting curves. Water Resour Res 12:224–228

    Google Scholar 

  • Peters A (2013) Simple consistent models for water retention and hydraulic conductivity in the complete moisture range. Water Resour Res 49:6765–6780. doi:10.1002/wrcr.20548

    Google Scholar 

  • Peters A, Durner W (2008) A simple model for describing hydraulic conductivity in unsaturated porous media accounting for film and capillary flow. Water Resour Res 44:W11417. doi:10.1029/2008WR007136

    Google Scholar 

  • Pham HQ, Fredlund DG, Barbour SL (2005) A study of hysteresis models for soil-water characteristic curves. Can Geotech J 42(6):1548–1568

    Google Scholar 

  • Philip JR, de Vries DA (1957) Moisture movement in porous media under temperature gradients. Eos Trans AGU 38(2):222–232

    Google Scholar 

  • Poulovassilis A (1970) Hysteresis of pore water in granular pore bodies. Soil Sci 109(1):5–12

    Google Scholar 

  • Poulovassilis A, Childs EE (1971) The hysteresis of pore water: the non-independence of domains. Soil Sci 112:301–312

    Google Scholar 

  • Priesack E, Durner W (2006) Closed-form expression for the multi-modal unsaturated conductivity function. Vadose Zone J 5(1):121–124

    Google Scholar 

  • Purcell WR (1949) Capillary pressures-their measurement using mercury and the calculation of permeability therefrom. J Pet Technol 1(2):39–48

    CAS  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous media. Physics 1:318–333

    Google Scholar 

  • Rogowski AS (1972) Estimation of the soil moisture characteristic and hydraulic conductivity: comparison of models. Soil Sci 114(6):423–429

    Google Scholar 

  • Romano N (2014) Soil moisture at local scale: measurements and simulations. J Hydrol, in press. http://dx.doi.org/10.1016/j.jhydrol.2014.01.026. Available online 21 Jan 2014

  • Romano N, Nasta P, Severino G, Hopmans JW (2011) Using bimodal lognormal functions to describe soil hydraulic properties. Soil Sci Soc Am J 75(2):468–480

    CAS  Google Scholar 

  • Ross PJ, Smettem KRJ (1993) Describing soil hydraulic properties with sums of simple functions. Soil Sci Soc Am J 57(1):26–29. doi:10.2136/sssaj1993.03615995005700010006x

    Google Scholar 

  • Ross PJ, Williams J, Bristow KL (1991) Equation for extending water-retention curves to dryness. Soil Sci Soc Am J 55(4):923–927. doi:10.2136/sssaj1991.03615995005500040004x

    Google Scholar 

  • Rossi C, Nimmo JR (1994) Modeling of soil water retention from saturation to oven dryness. Water Resour Res 30(3):701–708. doi:10.1029/93WR03238

    Google Scholar 

  • Rubin J (1965) Numerical method for analyzing hysteresis-affected, post-infiltration redistribution of soil moisture. Soil Sci Soc Am Proc 31:13–27

    Google Scholar 

  • Russo D (1988) Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic properties. Water Resour Res 24(3):453–459

    Google Scholar 

  • Russo D, Jury WA, Butters GL (1989) Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resour Res 25(10):2109–2118

    CAS  Google Scholar 

  • Saito H, Simunek J, Mohanty BP (2006) Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J 5:784–800. doi:10.2136/vzj2006.0007

    CAS  Google Scholar 

  • Sakaki T, O’Carroll DM, Illangasekare TH (2010) Direct quantification of dynamic effects in capillary pressure for drainage-wetting cycles. Vadose Zone J 9:424–437

    Google Scholar 

  • Schaap MG, Leij FJ (2000) Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model. Soil Sci Soc Am J 64(3):843–851. doi:10.2136/sssaj2000.643843x

    CAS  Google Scholar 

  • Schelle H, Durner W, Schlüter S, Vogel H-J, Vanderborght J (2013) Virtual soils: moisture measurements and their interpretation by inverse modeling. Vadose Zone J 12(3), doi:10.2136/vzj2012.0168

  • Schindler U, Durner W, Von Unold G, Müller L (2010a) Evaporation method for measuring unsaturated hydraulic properties of soils: extending the measurement range. Soil Sci Soc Am J 74(4):1071–1083

    CAS  Google Scholar 

  • Schindler U, Durner W, von Unold G, Mueller L, Wieland R (2010b) The evaporation method: extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup. J Plant Nutr Soil Sci 173(4):563–572

    CAS  Google Scholar 

  • Schlüter S, Vogel H-J, Ippisch O, Bastian P, Roth K, Schelle H, Durner W, Kasteel R, Vanderborght J (2012) Virtual soils: assessment of the effects of soil structure on the hydraulic behavior of cultivated soils. Vadose Zone J 11(3), doi:10.2136/vzj2011.0174

  • Schmid KS, Gross J, Helmig R (2014) Chemical osmosis in two-phase flow and salinity-dependent capillary pressures in rocks with microporosity. Water Resour Res 50(2):763–789. doi:10.1002/2013WR013848

    CAS  Google Scholar 

  • Schneider M, Goss K-U (2012) Prediction of the water sorption isotherm in air dry soils. Geoderma 170:64–69. doi:10.1016/j.geoderma.2011.10.008

    Google Scholar 

  • Schofield RK (1935) The pF of the water in soil. In: Transactions of the 3rd international congress of soil science. T. Murby, Oxford, pp 38–48

    Google Scholar 

  • Schultze B, Ippisch O, Huwe B, Durner W (1999) Dynamic nonequilibrium in unsaturated water flow. In: van Genuchten MT, Leij FJ, Wu L (eds) Proc. int. workshop on characterization und measurement of the hydraulic properties of unsaturated porous media. University of California, Riverside, pp 877–892

    Google Scholar 

  • Scott PS, Farquhar GJ, Kouwen N (1983) Hysteretic effects on net infiltration, advances in infiltration. Am. Soc. Agric. Eng. Publ, St. Josephs, pp 11–83, 163–170

    Google Scholar 

  • Shinomiya Y, Takahashi K, Kobiyama M, Kubota J (2001) Evaluation of the tortuosity parameter for forest soils to predict unsaturated hydraulic conductivity. J For Res 6(3):221–225

    Google Scholar 

  • Si BC, Kachanoski RG (2000) Unified solution for infiltration and drainage with hysteresis: theory and field test. Soil Sci Soc Am J 64:30–36

    CAS  Google Scholar 

  • Silva O, Grifoll J (2007) A soil-water retention function that includes the hyper-dry region through the BET adsorption isotherm. Water Resour Res 43:W11420. doi:10.1029/2006WR005325

    Google Scholar 

  • Simmons CS, Nielsen DR, Biggar JW (1979) Scaling of field-measured soil-water properties. I. Methodology. II. Hydraulic conductivity and flux. Hilgardia Calif Agric Exp Stn 47:1–15

    Google Scholar 

  • Simunek J, Wendroth O, Wypler N, van Genuchten MT (2001) Nonequilibrium water flow characterized from an upward infiltration experiment. Eur J Soil Sci 52:13–24

    Google Scholar 

  • Šimůnek J, Jarvis NJ, Van Genuchten MT, Gärdenäs A (2003) Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrol 272(1):14–35

    Google Scholar 

  • Stauffer F (1978) Time dependence of the relations between capillary pressure water content and conductivity during drainage of porous media. In: IAHR symposium on scale effects in porous media, Thessaloniki, 29 Aug–1 Sept 1978. IAHR, Madrid

    Google Scholar 

  • Stolte J, Freijer JI, Bouten W, Dirksen C, Halbertsma JM, Van Dam JC, Van den Berg JA, Veerman GJ, Wösten JHM (1994) Comparison of six methods to determine unsaturated soil hydraulic conductivity. Soil Sci Soc Am J 58:1596–1603

    CAS  Google Scholar 

  • Tani M (1982) The properties of a water-table rise produced by a one-dimensional, vertical, unsaturated flow. J Jpn For Soc 64:409–418

    Google Scholar 

  • Tokunaga TK (2009) Hydraulic properties of adsorbed water films in unsaturated porous media. Water Resour Res 45(6):W06415. doi:10.1029/2009WR007734

    Google Scholar 

  • Toledo PG, Novy RA, Davis HT, Scriven LE (1990) Hydraulic conductivity of porous media at low water content. Soil Sci Soc Am J 54(3):673–679

    Google Scholar 

  • Topp GC, Klute A, Peters DB (1967) Comparison of water content-pressure head data obtained by equilibrium, steady state, and unsteady-state methods. Soil Sci Soc Am Proc 31:312–314

    CAS  Google Scholar 

  • Tuller M, Or D (2001) Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour Res 37(5):1257–1276. doi:10.1029/2000WR900328

    Google Scholar 

  • Tuller M, Or D, Dudley LM (1999) Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour Res 35(7):1949–1964

    Google Scholar 

  • Tyler SW, Wheatcraft SW (1989) Application of fractal mathematics to soil water retention estimation. Soil Sci Soc Am J 53(4):987–996

    Google Scholar 

  • van Dam JC, Hendrickx JMH, van Ommen HC, Bannink MH, van Genuchten MT, Dekker LW (1990) Water and solute movement in a coarse-textured water repellent field soil. J Hydrol 120:359–379

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Google Scholar 

  • Van Genuchten MT, Nielsen DR (1985) On describing and predicting the hydraulic properties of unsaturated soils. Ann Geophys 3(5):615–628

    Google Scholar 

  • Vanclooster M, Boesten AJ, Tiktak N, Jarvis JG, Kroes R, Munoz-Carpena R, Clothier BE, Green SR (2004) On the use of unsaturated flow and transport models in nutrient and pesticide management. In: Feddes RA, de Rooij GH, van Dam JC (eds) Unsaturated-zone modeling, UR Frontis series. Kluwer Academic, Dordrecht, pp 331–362

    Google Scholar 

  • Vauclin M, Haverkamp R, Vachaud G (1979) Résolution numérique d’une équation de diffusion non linéaire. Presses Univ de Grenoble, Grenoble, 183 pp

    Google Scholar 

  • Viaene P, Vereecken H, Diels J, Feyen J (1994) A statistical analysis of six hysteresis models for the moisture retention characteristic. Soil Sci 157:345–355

    Google Scholar 

  • Visser WC (1968) An empirical expression for the desorption curve. In: Rijtema PE, Wassink H (eds) Water in the unsaturated zone, Proceedings of the Wageningen Symposium, IASH/AIHS, Unesco, Paris, France, pp 329–335

    Google Scholar 

  • Vogel T, van Genuchten MT, Cislerova M (2001) Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Adv Water Resour 24:133–144

    Google Scholar 

  • Wang Y, Ma J, Zhang Y, Zhao M, Edmunds WM (2013) A new theoretical model accounting for film flow in unsaturated porous media. Water Resour Res 49:5021–5028. doi:10.1002/wrcr.20390

    Google Scholar 

  • Webb SW (2000) A simple extension of two-phase characteristic curves to include the dry region. Water Resour Res 36(6):1425–1430. doi:10.1029/2000WR900057

    Google Scholar 

  • Weller U, Ippisch O, Köhne JM, Vogel HJ (2011) Direct measurement of unsaturated hydraulic conductivity in sandy soil including temporal dynamics, hydraulic non-equilibrium and hysteresis. Vadose Zone J 10:654–661

    Google Scholar 

  • Wildenschild D, Hopmans JW, Simunek J (2001) Flow rate dependence of soil hydraulic characteristics. Soil Sci Soc Am J 65:35–48

    CAS  Google Scholar 

  • Zhang ZF (2011) Soil water retention and relative permeability for conditions from oven-dry to full saturation. Vadose Zone J 10(4):1299–1308. doi:10.2136/vzj2011.0019

    Google Scholar 

  • Zhang R, Van Genuchten MT (1994) New models for unsaturated soil hydraulic properties. Soil Sci 158(2):77–85

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Durner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Durner, W., Diamantopoulos, E., Iden, S.C., Scharnagl, B. (2014). Hydraulic Properties and Non-equilibrium Water Flow in Soils. In: Teixeira, W., Ceddia, M., Ottoni, M., Donnagema, G. (eds) Application of Soil Physics in Environmental Analyses. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-06013-2_17

Download citation

Publish with us

Policies and ethics