Skip to main content

The Use of Numerical Flow and Transport Models in Environmental Analyses

  • Chapter
  • First Online:
Book cover Application of Soil Physics in Environmental Analyses

Abstract

This chapter provides an overview of alternative approaches for modeling water flow and contaminant transport problems in soils and groundwater. Special focus is on flow and transport processes in the variably saturated vadose zone between the soil surface and the groundwater table. The governing flow and transport equations are discussed for both equilibrium and nonequilibrium flow conditions, followed by three examples. The first example shows how one-dimensional root-zone modeling can be used to estimate short- and long-term recharge rates, including contaminant transport through the vadose zone. A second example illustrates a two-dimensional application involving drip irrigation, while the third example deals with two-dimensional nonequilibrium transport of a pesticide in a tile-drained field soil. Also discussed are alternative pore-scale modeling approaches that may provide a better understanding of the basic physical and geochemical processes affecting fluid flow and contaminant transport in saturated and variably saturated media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assefa KA, Woodbury AD (2013) Transient, spatially varied groundwater recharge modeling. Water Resour Res 49:1–14, doi:10.1002/wrcr.20332

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier Sci, New York

    Google Scholar 

  • Bear J, Cheng AHD (2008) Modeling groundwater flow and contaminant transport. Springer, New York

    Google Scholar 

  • Blunt MJ, Bijeljic B, Dong H, Gharbi O, Iglauer S, Mostaghimi P, Paluszny A, Pentland C (2013) Pore-scale imaging and modelling. Adv Water Resour 51:197–216

    Article  Google Scholar 

  • Boivin A, Šimůnek J, Schiavon M, van Genuchten MT (2006) Comparison of pesticide transport processes in three tile-drained field soils using HYDRUS-2D. Vadose Zone J 5(3):838–849

    Article  CAS  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media, Hydrol. Paper no 3, Colorado State University, Fort Collins, CO

    Google Scholar 

  • Celia MA, Reeves PC, Ferrand LA (1995) Recent advances in pore scale models for multiphase flow in porous media. Rev Geophys 33(S2):1049–1057

    Article  Google Scholar 

  • De Smedt F, Wierenga PJ (1979) Mass transfer in porous media with immobile water. J Hydrol 41(1):59–67

    Article  Google Scholar 

  • De Smedt F, Wierenga PJ (1984) Solute transfer through columns of glass beads. Water Resour Res 20(2):225–232

    Article  Google Scholar 

  • De Smedt F, Wauters F, Sevilla J (1986) Study of tracer movement through unsaturated sand. J Hydrol 85(1):169–181

    Article  Google Scholar 

  • Durner W (1994) Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res 32(9):211–183

    Article  Google Scholar 

  • Fatt I (1956) The network model of porous media I. Capillary pressure characteristics. Trans AIME 207:144–159

    Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Wiley, New York

    Google Scholar 

  • Finsterle S, Doughty C, Kowalsky MB, Moridis GJ, Pan L, Xu T, Zhang Y, Pruess K (2008) Advanced vadose zone simulations using TOUGH. Vadose Zone J 7:601–609

    Article  Google Scholar 

  • FLMW (1995) Leaching models and EU registration. Guidance document 4952/VI/95, Focus Leaching Modelling Workgroup (FLMW), Commission of the European Communities, Directorate-General for Agriculture VI B II-I, Brussels

    Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2(3):255–266

    Article  Google Scholar 

  • Gerke HH (2006) Preferential flow descriptions for structured soils. J Plant Nutr Soil Sci 169:382–400

    Article  CAS  Google Scholar 

  • Gerke HH, van Genuchten MT (1993) A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res 29:305–319

    Article  CAS  Google Scholar 

  • Gerke HH, van Genuchten MT (1996) Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media. Adv Water Resour 19:343–357

    Article  Google Scholar 

  • Gerke HH, German P, Nieber J (2010) Preferential flow: from the pore to the catchment scale. Vadose Zone J 9(2):207–212

    Article  Google Scholar 

  • Hanson BR, Šimůnek J, Hopmans JW (2008) Leaching with subsurface drip irrigation under saline, shallow ground water conditions. Vadose Zone J 8:810–818

    Article  Google Scholar 

  • Hargreaves GH (1975) Moisture availability and crop production. Trans Am Soc Agric Eng 18(5):980–984

    Article  Google Scholar 

  • Healy RW (2008) Simulating water, solute, and heat transport in the subsurface with the VS2DI software package. Vadose Zone J. Special Issue “Vadose Zone Modelling” 7:632–639

    Google Scholar 

  • Hendrickx JMH, Flury M (2001) Uniform and preferential flow, mechanisms in the vadose zone. In: Conceptual models of flow and transport in the fractured vadose zone. National Research Council. National Academy, Washington, DC, pp 149–187

    Google Scholar 

  • Hopmans JW, Stricker JNM (1989) Stochastic analysis of soil water regime in a watershed. J Hydrol 105:57–84

    Article  Google Scholar 

  • Jarvis NJ (1994) The MACRO model (Version 3.1), technical description and sample simulations. Reports and Dissertations 19. Department of Soil Science, Swedish University of Agricultural Sciences, Uppsala, Sweden, 51 pp

    Google Scholar 

  • Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eu J Soil Sci 58(3):523–546. doi:10.1111/j.1365-2389.2007.00915.x

    Article  Google Scholar 

  • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirement, ASCE manuals and reports on engineering practice, vol 70. ASCE, New York

    Google Scholar 

  • Jimenez-Martinez J, Skaggs TH, van Genuchten MT, Candela L (2009) A root zone modelling approach to estimating groundwater recharge from irrigated areas. J Hydrol 367:138–149

    Article  Google Scholar 

  • Kandelous MM, Šimůnek J, van Genuchten MT, Malek K (2011) Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Sci Soc Am J 75(2):488–497

    Article  CAS  Google Scholar 

  • Kirda C, Nielsen DR, Biggar JW (1973) Simultaneous transport of chloride and water during infiltration. Soil Sci Soc Am J 37(3):339–345

    Article  CAS  Google Scholar 

  • Kodesova R, Kozak J, Šimůnek J, Vacek O (2005) Field and numerical study of chlorotoluron transport in the soil profile: comparison of single and dual-permeability model. Plant Soil Environ 51(7):310–315

    Google Scholar 

  • Köhne JM, Mohanty B, Šimůnek J, Gerke HH (2004) Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models. Water Resour Res 40. doi:10.1029/2004WR00385

  • Köhne S, Lennartz B, Köhne JM, Šimůnek J (2006) Bromide transport at a tile-drained field site: experiment, one- and two-dimensional equilibrium and non-equilibrium numerical modeling. J Hydrol 321(1–4):390–408

    Article  Google Scholar 

  • Köhne JM, Köhne S, Šimůnek J (2009) A review of model applications for structured soils: a) Water flow and tracer transport. J Contam Hydrol. Special Issue “Flow Domains” 104(1–4):4–35. doi:10.1016/j.jconhyd.2008.10.002

  • Kosugi K (1996) Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour Res 32(9):2697–2703

    Article  Google Scholar 

  • Larsbo M, Roulier M, Stenemo F, Kasteel R, Jarvis N (2005) An improved dual-permeability model of water flow and solute transport in the vadose zone. Vadose Zone J 4(2):398–406. doi:10.2136/vzj2004.0137

    Article  Google Scholar 

  • Lazarovitch NJ, Šimůnek J, Shani U (2005) System-dependent boundary condition for water flow from subsurface source. Soil Sci Soc Am j 69:46–50

    Article  CAS  Google Scholar 

  • Leij FJ, Russel WB, Lesch SM (1997) Closed-form expressions for water retention and conductivity data. Ground Water 35(5):848–858

    Article  CAS  Google Scholar 

  • Liu H-H (1998) An active fracture model for unsaturated flow and transport in fractured rocks. Water Resour Res 34:2633–2646

    Article  Google Scholar 

  • Lu X, Jin M, van Genuchten MT, Wang B (2011) Ground water recharge at five representative sites in the Hebei Plain of China: case study. Ground Water 49(2):286–294

    Article  CAS  PubMed  Google Scholar 

  • Maciejewski S (1993) Numerical and experimental study of solute transport in unsaturated soils. J Contam Hydrol 14(3):193–206

    Article  CAS  Google Scholar 

  • Mallants D, van Genuchten MT, Simunek J, Jacques D, Seetharam S (2011) Leaching of contaminants to groundwater. In: Swartjes FA (ed) Dealing with contaminated sites; from theory to practical application, Chapter 18. Springer, Dordrecht, pp 787–850

    Chapter  Google Scholar 

  • Maraqa MA (2001) Prediction of mass-transfer coefficient for solute transport in porous media. J Contam Hydrol 53:153–171

    Article  CAS  PubMed  Google Scholar 

  • Maraqa MA, Wallace RB, Voice TC (1997) Effects of degree of water saturation on dispersivity and immobile water in sandy soil columns. J Contam Hydrol 25(3):199–218

    Article  CAS  Google Scholar 

  • Meakin P, Tartakovsky AM (2009) Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev Geophys 47(3), RG3002. doi:10.1029/2008RG000263

    Article  Google Scholar 

  • Millington RJ, Quirk JM (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207

    Article  CAS  Google Scholar 

  • Mohanty BP, Bowman RS, Hendrickx JMH, van Genuchten MT (1997) New piecewise-continuous hydraulic functions for modeling preferential flow in an intermittent flood-irrigated field. Water Resour Res 33(9):2049–2063

    Article  Google Scholar 

  • Narasimhan TN (2005) Buckingham, 1907; an appreciation. Vadose Zone J 4:434–441

    Article  Google Scholar 

  • Naveira-Cotta CP, Pontedeiro EM, Cotta RM, Su J, van Genuchten MT (2013) Environmental impact assessment of liquid waste ponds in uranium milling installations. Waste Biomass Valoriz 4:197–211. doi:10.1007/s12649-012-9156-0

    Article  CAS  Google Scholar 

  • Neto DC, Chang HK, van Genuchten MTh (2014) Groundwater level and rainfall: A mathematical view of water level variations of the Rio Claro Aquifer, Brazil. Hydrogeol J (submitted)

    Google Scholar 

  • Novak SM, Banton O, Schiavon M (2003) Modeling metolachlor exports in subsurface drainage water from two structured soils under maize (Eastern France). J Hydrol 270(3–4):295–308

    Article  CAS  Google Scholar 

  • O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW (2007) Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol 5(9):689–699

    Article  PubMed  Google Scholar 

  • Panday S, Huyakorn PS (2008) MODFLOW SURFACT: a state-of-the-art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations. Vadose Zone J 7:610–631

    Article  Google Scholar 

  • Peters RR, Klavetter EA (1988) A continuum model for water movement in an unsaturated fractured rock mass. Water Resour Res 24:416–430

    Article  Google Scholar 

  • Pot V, Šimůnek J, Benoit P, Coquet Y, Yra A, Martínez-Cordón M-J (2005) Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores. J Contam Hydrol 8:63–88

    Article  Google Scholar 

  • Raoof A, Hassanizadeh SM (2010) A new method for generating pore-network models of porous media. Transp Porous Media 81(3):391–407

    Article  Google Scholar 

  • Raoof A, Hassanizadeh SM (2012) A new formulation for pore‐network modeling of two‐phase flow. Water Resour Res 48, W01514. doi:10.1029/2010WR010180

    Article  Google Scholar 

  • Raoof A, Hassanizadeh SM (2013) Saturation‐dependent solute dispersivity in porous media: pore‐scale processes. Water Resour Res 49:1943–1951. doi:10.1002/wrcr.20152

    Article  Google Scholar 

  • Raoof A, Nick HM, Hassanizadeh SM, Spiers CJ (2013) PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput Geosci 61:160–174

    Article  CAS  Google Scholar 

  • Richards LA (1931) Capillary conduction of fluid through porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Rodríguez-Sinobas L, Gil M, Sanchez R, Benitez J (2012) Evaluation of drip and subsurface drip in a uniform loamy soil. Soil Sci 177(2):147–152

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39

    Article  CAS  Google Scholar 

  • Schaap MG, van Genuchten MT (2006) A modified Mualem-van Genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone J 5:27–34

    Article  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176

    Article  Google Scholar 

  • Šimůnek J, Bradford S (2008) Vadose zone modeling: introduction and importance. Vadose Zone J. Special Issue “Vadose Zone Modelling” 7(2):581–586

    Google Scholar 

  • Šimůnek J, van Genuchten MTh (2008) Modeling nonequilibrium flow and transport with HYDRUS. Vadose Zone J. Special Issue “Vadose Zone Modeling” 7:782–797

    Google Scholar 

  • Šimůnek J, Suarez DL, Šejna M (1996) The UNSATCHEM software package for simulating one-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium and kinetic chemistry. Version 2.0. Research Report No. 141, U.S. Salinity Laboratory, USDA, ARS, Riverside, CA, 186 pp

    Google Scholar 

  • Šimůnek J, Jarvis NJ, van Genuchten MT, Gärdenäs A (2003) Nonequilibrium and preferential flow and transport in the vadose zone: review and case study. J Hydrol 272:14–35

    Article  Google Scholar 

  • Šimůnek J, van Genuchten MT, Sejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. Special Issue “Vadose Zone Modelling” 7(2):587–600

    Google Scholar 

  • Šimůnek J, van Genuchten MTh, Šejna M (2012) The HYDRUS Software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Technical manual, Version 2.0, PC Progress, Prague, Czech Republic, 258 pp

    Google Scholar 

  • Šimůnek, Šejna M, Saito H, Sakai M, van Genuchten MTh (2013) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 4.16, HYDRUS Software Series 3, Department of Environmental Sciences, University of California, Riverside, CA, 340 pp

    Google Scholar 

  • Šimůnek J, Jacques D, Ramos TB, Leterme B (2014) The use of multicomponent solute transport models in environmental analyses. In: Texeira WG, Ceddia MB, Ottono MV, Donnagema GK (eds) Application of soil physics in environmental analyses, Springer (this publication)

    Google Scholar 

  • Skaggs TH, Trout TJ, Šimůnek J, Shouse PJ (2004) Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. J Irrig Drain Eng 130:304–310

    Article  Google Scholar 

  • Skaggs TH, Trout TJ, Rothfuss Y (2010) Drip irrigation water distribution patterns: effects of emitter rate, pulsing, and antecedent water. Soil Sci Soc Am J 74:1886–189. doi:10.2136/sssaj2009.0341

    Article  CAS  Google Scholar 

  • Toride N, Inoue M, Leij FJ (2003) Hydrodynamic dispersion in an unsaturated dune sand. Soil Sci Soc Am J 67(3):703–712

    Article  CAS  Google Scholar 

  • USEPA (2004) Drinking water standards and health advisories. Office of Water, U.S. Environmental Protection Agency (USEPA), Washington, DC, 20 pp

    Google Scholar 

  • van Dam JC, Groenendijk P, Hendriks RFA, Kroes JG (2008) Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J 7:640–635

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • van Genuchten MT, Dalton FN (1986) Models for simulating salt movement in aggregated field soils. Geoderma 38:165–183

    Article  Google Scholar 

  • van Genuchten MT, Wagenet RJ (1989) Two-site/two-region models for pesticide transport and degradation: theoretical development and analytical solutions. Soil Sci Soc Am J 53:1303–1310

    Article  Google Scholar 

  • van Genuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci Soc Am J 40(4):473–480

    Article  Google Scholar 

  • van Genuchten MT, Šimůnek J, Leij FJ, Toride N, Šejna M (2012) STANMOD: model use, calibration and validation. Trans ASABE 55(4):1353–1366

    Google Scholar 

  • Vanderborght J, Kasteel R, Herbst M, Javaux M, Thiéry D, Vanclooster M, Mouvet C, Vereecken H (2005) A set of analytical benchmarks to test numerical models of flow and transport in soils. Vadose Zone J 4(1):206–221. doi:10.2136/vzj2005.0206

    Article  Google Scholar 

  • Vogel T, van Genuchten MT, Cislerova M (2000) Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Adv Water Resour 24(2):133–144

    Article  Google Scholar 

  • Vogel T, Brezina J, Dohnal M, Dusek J (2010) Physical and numerical coupling in dual-continuum modeling of preferential flow. Vadose Zone J 9(2):260–267. doi:10.2136/vzj2009.0091

    Article  Google Scholar 

  • White MD, Oostrom M, Rockhold ML, Rosing M (2008) Scalable modeling of carbon tetrachloride migration at the Hanford site using the STOMP simulator. Vadose Zone J 7:654–666

    Article  Google Scholar 

  • Wildenschild D, Vaz CMP, Rivers ML, Rikard D, Christensen BSB (2002) Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J Hydrol 267(3):285–297

    Article  Google Scholar 

  • Yeh GT, Salvage KM, Gwo JP, Zachara JM, Szecsody JE (1998) HYDROBIOGEOCHEM: a coupled model of hydrological transport and mixed biochemical kinetic/equilibrium reactions in saturated-unsaturated media. Rep. ORNL/TM-13668, Oak Ridge National Laboratory, Oak Ridge, TN

    Google Scholar 

  • Zimmerman RW, Chen G, Hadgu T, Bodvarsson GS (1993) A numerical dual-porosity model with semi-analytical treatment of fracture/matrix flow. Water Resour Res 29:2127–2137

    Article  Google Scholar 

  • Zurmühl T, Durner W (1996) Modeling transient water and solute transport in a biporous soil. Water Resour Res 32:819–829

    Article  Google Scholar 

  • Zyvoloski GA, Robinson BA, Dash ZV, Trease LL (1997) Summary of the models and methods for the FEHM application – a finite element heat- and mass-transfer code. Los Alamos National Laboratory Rept. LA-13307-MS, Los Alamos, NM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martinus Th. van Genuchten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Genuchten, M.T., Naveira-Cotta, C., Skaggs, T.H., Raoof, A., Pontedeiro, E.M. (2014). The Use of Numerical Flow and Transport Models in Environmental Analyses. In: Teixeira, W., Ceddia, M., Ottoni, M., Donnagema, G. (eds) Application of Soil Physics in Environmental Analyses. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-06013-2_15

Download citation

Publish with us

Policies and ethics