Skip to main content

Soil Moisture and Soil Water Storage Using Hydrological Modeling and Remote Sensing

  • Chapter
  • First Online:
Application of Soil Physics in Environmental Analyses

Abstract

Soil moisture and soil water storage play a significant role in lumped and distributed hydrological simulation, both for model initialization and in later time steps to control and to correct model performance. On the other side, rainfall-runoff models still need to be improved to simulate reasonably well the vertical exchanges of heat and water between the soil and the atmosphere, that may result in inconsistent soil moisture fields. Therefore, many issues remain to be adequately addressed, such as how to include new data sources as well as how to improve methods for calibration, validation, parameterization and upscaling of hydrological models. This work focuses on relatively new data sources, addressing the supply of soil moisture (Soil Moisture Experiment 2003 – SMEX03) and soil water storage information (GRACE – Gravity Recovery and Climate Experiment) to a typical lumped rainfall-runoff model (SMAP – Soil Moisture Accounting Procedure running at daily and monthly steps) from in situ measurements and remotely sensed imagery for the São Francisco and Amazon basins in Brazil. In particular, a sensitivity analysis is conducted to evaluate jointly both hydrological simulations and data collected and acquired for the studied areas highlighting soundly based and good results and also pointing out some of the challenges to be faced in the near future. We should mention that much more work on soil physics is still necessary for applications regarding rainfall-runoff models to work properly at the watershed scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MD, Bastiaanssen WGM (2003) Retrieving soil moisture storage in the unsaturated zone using satellite imagery and bi-annual phreatic surface fluctuations. J Irrig Drain Syst 17:141–161

    Article  Google Scholar 

  • Almeida Filho FGV (2009) Variação temporal do campo gravitacional detectada pelo satélite GRACE: aplicação na bacia Amazônica, São Paulo. Ph.D. thesis, EP/USP, São Paulo, SP, Brasil

    Google Scholar 

  • Allen RG, Tasumi M, Morse A, Trezza R (2005) A Landsat-based energy balance and evapotranspiration model in western US water rights regulation and planning. J Irrig Drain Syst 19:251–268

    Article  Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) model. J Irrig Drain Eng 133(4):380–394

    Article  Google Scholar 

  • Araujo AAM (2006) Um novo esquema de parametrização hidrológica da superfície terrestre com redistribuição lateral da água no solo (A new hydrologic land surface parametrization scheme with lateral soil water redistribution). Ph.D. thesis, Civil Engineering Department, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 236 p

    Google Scholar 

  • Bastiaanssen WGM (1995) Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates. Ph.D. thesis, CIP Data Koninklijke Bibliotheek, Den Haag, The Netherlands, 273 p

    Google Scholar 

  • Bastiaanssen WGM (2000) Sebal-based sensible and latent heat flux in the irrigated Gediz basin, Turkey. J Hydrol 229:87–100

    Article  Google Scholar 

  • Bastiaanssen WGM, Cheema MJM, Immerzeel WW, Miltenburg IJ, Pelgrum H (2012) Surface energy balance and actual evapotranspiration of the transboundary Indus basin estimated from satellite measurements and the ETLook model. Water Resour Res 48(11):W11512

    Article  Google Scholar 

  • Bathurst JC, O’Connell PE (1992) Future of distributed modelling: the Système Hydrologique Europeen. Hydrol Process 6:265–277

    Article  Google Scholar 

  • Beven KJ (1989) Changing ideas in hydrology: the case of physically-based models. J Hydrol 105:157–172

    Article  Google Scholar 

  • Beven KJ, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydol Process 6:279–298

    Article  Google Scholar 

  • Canedo PM (1979) The reliability of conceptual catchment model calibration. Ph.D. dissertation, University of Lancaster, U.K.

    Google Scholar 

  • Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet Sci Lett 298(3–4):263–274

    Article  CAS  Google Scholar 

  • Di Bello RC (2005) Análise do comportamento da umidade do solo no modelo chuva-vazão SMAP II – versão com suavização hiperbólica – Estudo de caso: região de Barreiras na bacia do rio Grande-BA (Analysis of the soil moisture behavior in the rainfall-runoff SMAPII model – hyperbolic smoothing version – Case study: Barreiras region in Rio Grande watershed – Bahia, Brazil). M.Sc. thesis, Civil Engineering Department, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 225 p

    Google Scholar 

  • Dias NL, Kan A (1999) A hydrometeorological model for basin-wide seasonal evapotranspiration. Water Resour Res 35(11):3409–3418

    Article  Google Scholar 

  • Diskin MH, Simon E (1977) A procedure for the selection of objective functions for hydrologic simulation models. J Hydrol 20:129–149

    Article  Google Scholar 

  • Dooge JCI (1986) Looking for hydrologic laws. Water Resour Res 22(9):46S–58S

    Article  Google Scholar 

  • Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031

    Article  Google Scholar 

  • Dubois PC, Van Zyl J, Engman T (1995) Measuring soil moisture with imaging radars. IEEE Trans Geosci Remote Sens 33(4):915–926

    Article  Google Scholar 

  • Fortin JP, Villeneuve JP, Guilbot A, Seguin B (1986) Development of a modular hydrological forecasting model based on remotely sensed data for interactive utilization on a microcomputer. In: Johnson AI (ed) Proceedings cocoa beach workshop 1985: hydrologic applications of space technology, IAHS publication no. 160, Int. Assoc. of Hydrologic Sci., Wallingford, England, pp 307–319

    Google Scholar 

  • Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006) Preliminary results of ENVISAT RA-2 derived water levels validation over the Amazon basin. Remote Sens Environ 114:252–264

    Article  Google Scholar 

  • Getirana ACV (2009) Contribuições da altimetria espacial à modelagem hidrológica de grandes bacias na Amazônia ( Spatial altimetry contributions to the hydrological modeling of large basins in Amazon). Ph.D. thesis, Civil Engineering Department, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 273 p

    Google Scholar 

  • Getirana ACV, Bonnet MP, Calmant S, Roux E, Rotunno Filho OC, Mansur WJ (2009) Hydrological monitoring of poorly gauged basins based on rainfall-runoff modeling and spatial altimetry. J Hydrol 379:205–219

    Article  Google Scholar 

  • Grayson RB, Moore ID, McMahon TA (1992a) Physically-based hydrologic modelling, 1, A terrain-based model for investigative purposes. Water Resour Res 28:2639–2658

    Article  Google Scholar 

  • Grayson RB, Moore ID, McMahon TA (1992b) Physically based hydrologic modelling, 2, Is the concept realistic? Water Resour Res 28:2659–2666

    Article  Google Scholar 

  • Gupta VK, Sorooshian S (1983) Uniqueness and observability of conceptual rainfall-runoff model parameters: the percolation process examined. Water Resour Res 19:269–276

    Article  Google Scholar 

  • Gupta VK, Sorooshian S (1985) The automatic calibration of conceptual catchment models using derivative-based optimization algorithms. Water Resour Res 21:473–485

    Article  Google Scholar 

  • Han SC, Kim H, Yeo LY (2009) Dynamics of surface water storage in the Amazon inferred from measurements of inter-satellite distance change. Geophys Res Lett 36(9):L09403

    Article  Google Scholar 

  • Harvey KD, Solomon SI (1984) Satellite remotely-sensed land-use data for hydrologic modelling. Can J Remote Sens 10(1):68–91

    Google Scholar 

  • Hemakumara HM, Chandrapala L, Moene A (2003) Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agric Water Manage 58:109–122

    Article  Google Scholar 

  • Hendrickson JD, Sorooshian S, Brazil LE (1988) Comparison of Newton-type and direct search algorithms for calibration of conceptual rainfall-runoff models. Water Resour Res 24:691–700

    Article  Google Scholar 

  • Hillel D (1986) Modelling in soil physics: a critical review. In: Future developments in soil science research. Soil Science Society of America, Madison, Wisconsin, pp 35–42

    Google Scholar 

  • Jackson TJ, Ragan RM, Fitch WN (1977) Test of Landsat-based urban hydrologic modelling. J Water Resour Plann Manage Div ASCE 103(WR1):141–158

    Google Scholar 

  • Jensen KH, Mantoglou A (1992) Future of distributed modelling. Hydrol Process 6:255–264

    Article  Google Scholar 

  • Johnston PR, Pilgrim DH (1976) Parameter optimization for watershed models. Water Resour Res 12:477–486

    Article  Google Scholar 

  • Kavetski D, Kuczera G (2007) Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration. Water Resour Res 43, W03411

    Article  Google Scholar 

  • Kitanidas PK, Bras RL (1980) Real-time forecasting with a conceptual hydrologic model, 1, Analysis of uncertainty. Water Resour Res 16:1025–1033

    Article  Google Scholar 

  • Klemes V (1983) Conceptualization and scale in hydrology. J Hydrol 65:1–23

    Article  Google Scholar 

  • Kouwen N (1988) WATFLOOD: a micro-computer based flood forecasting system based on real-time weather radar. Can Water Resour J 13(1):62–77

    Article  Google Scholar 

  • Kuczera G (1983) Improved parameter inference in catchment models, 1, Evaluating parameter uncertainty. Water Resour Res 19(5):1151–1162

    Article  Google Scholar 

  • Leconte R, Brissette F, Galarneau M, Rousselle J (2004) Mapping near-surface soil moisture with RADARSAT- a synthetic aperture radar data. Water Resour Res 40:1029–1038

    Article  Google Scholar 

  • Lopes JEG, Braga BPF, Conejo JGL (1981) SMAP, a simplified hydrologic model. International symposium on rainfall-runoff modelling, Mississippi State University, Mississippi

    Google Scholar 

  • Lopes HL, Accioly LJO, Silva FHBB, Sobral MCM, Araújo Filho JC, Candeias ALB (2011) Espacialização da umidade do solo por meio da temperatura da superfície e índice de vegetação. Revista Brasileira de Engenharia Agrícola e Ambiental 15(9):973–980

    Article  Google Scholar 

  • Lucena AJ, Rotunno Filho OC, França JRA, Peres LF, Xavier LNR (2013) Urban climate and clues of heat island events in the metropolitan area of Rio de Janeiro. Theor Appl Climatol 111(3–4):497–511

    Article  Google Scholar 

  • Lumb AM, McCammon RB, Kiltle JL Jr (1994) Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program – Fortran, U.S. Geological Survey, Water Resources Investigations Report 94-4168

    Google Scholar 

  • Magette WL, Shanholtz VO, Carr JC (1976) Estimating selected parameters for the Kentucky watershed model from watershed characteristics. Water Resour Res 12(3):472–476

    Article  Google Scholar 

  • McCabe MF, Wood EF, Wójcik R, Pan M, Sheffield J, Gao H, Sua H (2008) Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens Environ 112:430–444

    Article  Google Scholar 

  • Meade RH, Rayol JM, Conceição SC, Natividade JRG (1991) Backwater effects in the Amazon River basin of Brazil. Environ Geol Water Sci 18(2):105–114

    Article  Google Scholar 

  • Moore RJ, Clarke RT (1981) A distribution function approach to rainfall-runoff modelling. Water Resour Res 17:1367–1382

    Article  Google Scholar 

  • Njoku EG, Jackson TJ, Lakshimi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229

    Article  Google Scholar 

  • Ragan RM, Jackson TJ (1980) Runoff synthesis using Landsat and SCS model. J Hydraul Div ASCE 106(HY5):667–678

    Google Scholar 

  • Rango A, Feldman A, George TS III, Ragan RM (1983) Effective use of Landsat data in hydrologic models. Water Resour Bull 19(2):165–174

    Article  Google Scholar 

  • Rotunno Filho OC (1995) Soil moisture mapping using remote sensing and geostatistics applied to rainfall-runoff models. Ph.D. thesis, Department of Civil Engineering, University of Waterloo, Canada, 396 p

    Google Scholar 

  • Rotunno Filho OC, Soulis ED, Kouwen N, Abdeh-Kolahchi A, Pultz TJ, Crevier Y (1996) Soil moisture in pasture fields using ERS-1 SAR data: preliminary results. Can J Remote Sens 22(1):95–107

    Google Scholar 

  • Sano EE, Assad ED (2004) Projeto de Pesquisa SMEX03-Brasil. Relatório de Campo – Barreiras Bahia, Dezembro de 2003. Embrapa Cerrados, Brasil

    Google Scholar 

  • Sano EE, Assad ED, Jackson TJ, Crow W, Hsu A (2004) Overview of the aqua/AMSR-E 2003 soil moisture experiment in Brazil (SMEX03 Brazil). International geoscience and remote sensing symposium, IGARSS’2004, IEEE, pp 329–331

    Google Scholar 

  • Scott C, Bastiaanssen W, Ahmad M (2003) Mapping root zone soil moisture using remotely sensed optical imagery. J Irrig Drain Eng 129(5):326–335

    Article  Google Scholar 

  • Silva JS, Calmant S, Seyler F, Rotunno Filho OC, Cochonneau G, Mansur WJ (2010) Water levels in the Amazon basin derived from the ERS-2 and ENVISAT radar altimetry missions. Remote Sens Environ 114:2160–2181

    Article  Google Scholar 

  • Soil Conservation Service (1972) National engineering handbook – section 4: hydrology. SCS-USDA, Washington, DC

    Google Scholar 

  • Sorooshian S, Arfi F (1982) Response surface parameter sensitivity analysis methods for postcalibration studies. Water Resour Res 18:1531–1538

    Article  Google Scholar 

  • Sorooshian S, Dracup JA (1980) Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heterocedastic error cases. Water Resour Res 16:430–442

    Article  Google Scholar 

  • Sorooshian S, Gupta VK (1985) The analysis of structural identifiability: theory and application to conceptual rainfall-runoff models. Water Resour Res 21(4):487–495

    Article  Google Scholar 

  • Sorooshian S, Gupta VK, Fulton JC (1983) Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models: influence of calibration data variability and length on model credibility. Water Resour Res 10:251–259

    Article  Google Scholar 

  • Tao T, Kouwen N (1989) Remote sensing and fully distributed modelling for flood forecasting. J Water Resour Plan Manage ASCE 115:809–823

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins W, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tasumi M (2003) Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. thesis. University of Idaho, Moscow, Idaho, EUA, 357 p

    Google Scholar 

  • Tasumi M, Allen RG, Trezza R, Wright JL (2005a) Satellite-based energy balance to assess within-population variance of crop coefficient curves. J Irrig Drain Eng 131(1):94–109

    Article  Google Scholar 

  • Tasumi M, Trezza R, Allen RG, Wright JL (2005b) Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U. S. J Irrig Drain Syst 19:355–376

    Article  Google Scholar 

  • Trezza R (2002) Evapotranspiration using a satellite-based surface energy balance with standardized ground control. Ph.D. thesis, Biological and Agriculturas Engineering, Utah State University, Logan, Utah, 255 p

    Google Scholar 

  • Troutman BM (1985a) Errors and parameter estimation in precipitation-runoff modelling, 1, theory. Water Resour Res 21:1195–1213

    Article  Google Scholar 

  • Troutman BM (1985b) Errors and parameter estimation in precipitation-runoff modelling, 2, a case study. Water Resour Res 21:1214–1222

    Article  Google Scholar 

  • U. S. Army Corps of Engineers (1976) Urban storm water runoff model (STORM) – Computer program 723-S8-L2520. Hydrologic Engineering Center, Davis

    Google Scholar 

  • U. S. Army Corps of Engineers (1981) HEC-1 flood hydrograph package. Hydrologic Engineering Center, Davis

    Google Scholar 

  • Vereecken H, Huisman JA, Bogena H, Vanderborght J, Vrugt JA, Hopmans JW (2008) On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour Res 44:1–21

    Google Scholar 

  • Viana LQ, Gonçalves RC, Rotunno Filho OC (2013) Avaliação espaço-temporal do NDVI com a precipitação e com a evapotranspiração na bacia do rio Preto RJ/MG, XX Simpósio Brasileiro de Recursos Hídricos, ABRH, Bento Gonçalves/RS, 8 pp

    Google Scholar 

  • Webb RP, Lermak R, Feldman A (1980) Determination of land use from satellite imagery for input into hydrologic models. Fourteenth international symposium on remote sensing of the environment, Anne Arbour

    Google Scholar 

  • Winsemius HC (2009) Satellite data as complementary information for hydrological modelling. Ph.D. thesis, DUT, Delft, Holanda

    Google Scholar 

  • Xavier AE (2001) Hyperbolic penalty: a new method for nonlinear programming with inequalities. Int Trans Oper Res 8:659–671

    Article  Google Scholar 

  • Xavier LNR (2012) Modelagem hidrológica com o aporte de dados da missão espacial GRACE: aplicação a bacias brasileiras (Hydrological modeling with GRACE data: application to Brazilian watersheds. Ph.D. thesis, Civil Engineering Department, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 250 p

    Google Scholar 

  • Xavier AE, de Oliveira AAF (2005) Optimal covering of plane domains by circles via hyperbolic smoothing. J Global Optim 31:493–504

    Article  Google Scholar 

  • Xavier LNR, Becker M, Cazenave A, Longuevergne L, Llovel W, Rotunno Filho OC (2010) Interannual variability in water storage over 2003-2008 in the Amazon Basin from GRACE space gravimetry in situ river level and precipitation data. Remote Sens Environ 114:1629–1637

    Article  Google Scholar 

  • Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrological models. J Hydrol 204:83–97

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Civil Engineering Program of Instituto Alberto Luiz Coimbra de Pos-Graduação e Pesquisa de Engenharia (COPPE) – Universidade Federal do Rio de Janeiro (UFRJ) through the support of the Laboratory of Water Resources and Environmental Issues (LABH2O) with respect to data and infrastructure provided by these institutions for this research. The authors would like to express their sincere appreciation to the financial support for the work, which came through CAPES (Fundação Coordenação de Aperfeiçoamento de Nível Superior) – CAPES/COFECUB No. 516/05 (2005–2012) and Project IME-PEC/COPPE – CAPES – Aux-PE-PRO-Defense 1783/2008 (2008–2012 ), CNPq (Conselho Nacional de Ciência e Tecnologia) – Project MCT/FINEP/CT-HIDRO/EIBEX-1 (2005–2011), which addressed representative watersheds, Project PROSUL (Programa Sul-Americano de Apoio às Atividades de Cooperação em Ciência e Tecnologia) – Process 490684/2007-6 (2007–2012), which deals with remote sensing techniques applied to hydrological monitoring and climate change, and Project CNPq Edital Universal No. 14/2013 – Process 485136/2013-9, which is focused on rainfall-runoff modeling and on the corresponding issue of water balance and soil moisture with respect to extreme events, and Secretaria de Educação Superior (SESu) – Ministério da Educação (MEC) – CAPES – AUX-PE-PET-1228/2009 (PET CIVIL UFRJ), educational agencies of the Brazilian government. The authors would like to acknowledge the support provided by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) – Project PEC/COPPE – FAPERJ 014/2010 (2010–2012), Project FAPERJ – Process E-26/103.116/2011 (2012–2014) and Project FAPERJ – Pensa Rio – Edital 19/2011 (2012–2014) – E26/110.753/2012. The authors would like also to recognize the support of CPRM, INPE, ANA, EMBRAPA, CEPEL, ONS and INMET, for the continuous support of the research in hydrology in Brazil. In addition, the authours would like to recognize the support of Laboratoire d’Études en Géophysique et Océanographie Spatiales (LEGOS) (Université Paul Sabatier – UPS-Toulouse III, Centre Nationale d’Études Spatiales (CNES), ESA (European Space Agency), National Aeronautics and Space Administration (NASA), e ORE-HYBAM (Observatoire de Recherche en Environment – Contrôles géodynamique, hidrologique et biogéochimique de l’érosion/alteration et dês transferts de matière dans le bassin de l’Amazone). A special thank you goes to Dr. Edson Eijy Sano (EMBRAPA), to Dr. Eduardo Assad (EMBRAPA) and to Dr. Thomas J. Jackson (USDA), who stimulated the use of the soil moisture dataset collected during SMEX03 experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Corrêa Rotunno Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rotunno Filho, O.C. et al. (2014). Soil Moisture and Soil Water Storage Using Hydrological Modeling and Remote Sensing. In: Teixeira, W., Ceddia, M., Ottoni, M., Donnagema, G. (eds) Application of Soil Physics in Environmental Analyses. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-06013-2_14

Download citation

Publish with us

Policies and ethics