Skip to main content

Microbial and Functional Diversity of Vermicompost Bacteria

  • Chapter
  • First Online:
Book cover Bacterial Diversity in Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 1))

Abstract

Vermicompost, an excellent biofertilizer, is the product of non-thermophilic biodegradation of organic material produced by the combined action of earthworms and associated microbes in the process termed as vermicomposting. Vermicompost is a finely divided peat like material with high porosity, aeration, water holding capacity, low C:N ratios, excellent nutrient status and microbial diversity and activity. The microbes associated with vermicompost promote the plant growth directly by production of plant growth-promoting (PGP) enzymes and hormones such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA), phosphate solubilization and siderophore production. Microbes also enhance plant growth indirectly by the suppression of plant pest and diseases. Vermicomposting technology apart from producing the biofertilizer enriched with beneficial microbes, also acts as a “panacea” for management of tons of organic wastes generated each day from urban and rural areas which if not disposed properly will have a serious impact on the environment and life on earth. Thus, vermicompost microbes help to improve soil fertility, promote plant growth and play a key role for effective management of wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Sinha RK, Sharma J (2010) Vermiculture for sustainable horticulture: agronomic impact studies of earthworms, cow dung compost and vermicompost vis-a-vis chemical fertilizers on growth and yield of lady’s finger (Abelmoschus esculentus). Int J Global Environ Issues 10(3):366–377

    Google Scholar 

  • Aira M, Gomez-Brandon M, González-Porto P, Domínguez J (2011) Selective reduction of the pathogenic load of cow manure in an industrial-scale continuous-feeding vermireactor. Bioresour Technol 102(20):9633–9637

    CAS  PubMed  Google Scholar 

  • Albanell E, Plaixats J, Cabrero T (1988) Chemical changes during vermicomposting (Eisenia fetida) of sheep manure mixed with cotton industrial wastes. Biol Fertil Soils 6(3):266–269

    CAS  Google Scholar 

  • Arancon NQ, Edwards CA, Lee S (2002) Management of plant parasitic nematode populations by use of vermicomposts. In: Proceedings of the Brighton crop protection conference—pests and diseases, vol 8B-2, pp 705–716

    Google Scholar 

  • Arancon NQ, Edwards CA, Bierman P, Metzger JD, Lee S, Welch C (2003) Effects of vermicomposts to tomatoes and peppers grown in the field and strawberries under high plastic tunnels. Pedobiologia 47:731–735

    Google Scholar 

  • Arancon NQ, Galvis PA, Edwards CA (2005) Suppression of insect pest populations and damage to plants by vermicomposts. Bioresour Technol 96:1137–1142

    CAS  PubMed  Google Scholar 

  • Arancon NQ, Edwards CA, Yardim EN, Oliver TJ, Byrne RJ, Keeney G (2007) Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus spp. ) and aphid (Myzus persicae) populations and damage by vermicomposts. Crop Prot 26(1):29–39

    Google Scholar 

  • Atiyeh RM, Dominguez J, Subler S, Edwards CA (2000a) Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouche) and the effects on seedling growth. Pedobiologia 44:709–724

    Google Scholar 

  • Atiyeh RM, Subler S, Edwards CA, Bachman G, Metzger JD, Shuster W (2000b) Effects of vermicomposts and composts on plant growth in horticulture container media and soil. Pedobiologia 44:579–590

    Google Scholar 

  • Atiyeh RM, Arancon NQ, Edwards CA, Metzger JD (2000c) Influence of earthworm-processed pig manure on the growth and yield of green-house tomatoes. Bioresour Technol 75:175–180

    CAS  Google Scholar 

  • Atiyeh RM, Arancon NQ, Edwards CA, Metzger JD (2001) The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Bioresour Technol 81:103–108

    Google Scholar 

  • Benitez E, Nogales R, Elvira C, Masciandaro G, Ceccanti B (1999) Enzymes activities as indicators of the stabilization of sewage sludges composting by Eisenia foetida. Bioresour Technol 67:297–303

    CAS  Google Scholar 

  • Bentz JA, Reeves J, Barbosa P, Francis B (1995) Nitrogen fertilizer effect on selection, acceptance and suitability of Euphorbia pulcherrima (Euphorbiaceae) as a host plant to Bemisia tabaci (Homoptera: Aleyrodidae). Environ Entomol 24:40–45

    Google Scholar 

  • Bernai MP, Paredes C, Sanchez-Monedero MA, Cegarra J (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol 63:91–99

    Google Scholar 

  • Bhadoria PBS, Prakash YS, Kar S, Amitava R (2003) Relative efficacy of organic manures on rice production in lateritic soil. Soil Use Manage 19(1):80–82

    Google Scholar 

  • Bhatnagar RK, Palta RK (1996) Earthworm-vermiculture and vermicomposting. Kalyani, New Delhi

    Google Scholar 

  • Bilgrami AL (1996) Evaluation of the predation abilities of the mite Hypoaspis calcuttaensis predaceous on plant and soil nematodes. Fund Appl Nematol 20(1):96–98

    Google Scholar 

  • Binet F, Fayolle L, Pussard M, Crawford JJ, Traina SJ, Tuovinene OH (1998) Significance of earthworms in stimulating soil microbial activity. Biol Fertil Soils 27:79–84

    Google Scholar 

  • Biradar AP, Sunita ND, Teggel RG, Devaradavadgi SB (1998) Effect of vermicompost on the incidence of subabul psyllid. Insect-Environ 4:55–56

    Google Scholar 

  • Brown BA, Mitchell MJ (1981) Role of the earthworm Eisenia fetida in affecting survival of Salmonella enteritidis ser. typhimurium. Pedobiologia 22:434–438

    Google Scholar 

  • Chamani E, Joyce DC, Reihanytabar A (2008) Vermicompost effects on the growth and flowering of petunia hybrid ‘Dream Neon Rose’. American-Eurasian J Agric Environ Sci 3:506–512

    Google Scholar 

  • Chan LPS, Griffiths DA (1988) The vermicomposting of pretreated pig manure. Biological Wastes 24(1):57–69

    Google Scholar 

  • Chand S, Pandey A, Anwar M, Patra DD (2011) Influence of integrated supply of vermicompost, biofertilizer and inorganic fertilizer on productivity and quality of rose scented geranium (Pelargonium species). Indian J Nat Prod Resour 2:375–382

    Google Scholar 

  • Chaoui H, Edwards CA, Brickner M, Lee S, Arancon N (2002) Suppression of the plant diseases, Pythium (damping off), Rhizoctonia (root rot) and Verticillum (wilt) by vermicomposts. In: Proceedings of the Brighton crop protection conference—pests and diseases, vol II(8B-3),pp 711–716

    Google Scholar 

  • Chen WD, Hoitink HA, Schmitthenner AF, Touvinen OH (1987) The role of microbial activity in suppression of damping off caused by Pythium ultimum. Phytopathology 78(3):314–322

    Google Scholar 

  • Clapperton MJ, Lee NO, Binet F, Conner RL (2001) Earthworms indirectly reduce the effect of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticium aestivum cv. Fielder). Soil Biol Biochem 33(11):1531–1538

    CAS  Google Scholar 

  • Culliney TW, Pimentel D (1986) Ecological effects of organic agricultural practices on insect populations. Agric Ecosyst Environ 15(4):253–266

    Google Scholar 

  • Dash MC (1978) Role of earthworms in the decomposer system. In: Singh JS, Gopal B (eds) Glimpses of ecology. India International Scientific Publication, New Delhi, pp 399–406

    Google Scholar 

  • Devi SH, Vijayalakshmi K, Pavana JK, Shaheen SK, Jyothi K, Surekha RM (2009) Comparative assessment in enzyme activities and microbial populations during normal and vermicomposting. J Environ Biol 30:1013–1017

    PubMed  Google Scholar 

  • Devliegher W, Verstraete W (1997) Microorganisms and soil physico-chemical conditions in the drilosphere of Lumbricus terrestris. Soil Biol Biochem 29(11):1721–1729

    CAS  Google Scholar 

  • Dominguez J, Edwards CA (2004) Vermicomposting organic wastes: a review. In: Shakir Hanna SH, Mikhail WZA (eds) Soil zoology for sustainable development in the 21st century. Safwat H. Shakir Hanna, Cairo, pp 369–395

    Google Scholar 

  • Doube BM, Stephens PM, Davoren CW, Ryder MH (1994) Interactions between earthworms, beneficial soil microorganisms and root pathogens. Appl Soil Ecol 1(1):3–10

    Google Scholar 

  • Eastman BR (1999) Achieving pathogen stabilization using vermicomposting. BioCycle 40(11):62–64

    Google Scholar 

  • Edwards CA (1998) The use of earthworms in the breakdown and management of organic wastes. In: Edwards CA (ed) Earthworm Ecology. CRC, Boca Raton, pp 327–354

    Google Scholar 

  • Edwards CA (2011) Human pathogen reduction during vermicomposting. In: Edwards CA, Arancon NQ, Sherman R (eds) Vermiculture technology: earthworms, organic wastes and environmental management. CRC, Boca Raton, pp 249–261

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman & Hall, London, p 426

    Google Scholar 

  • Edwards CA, Burrows I (1988) The potential of earthworm composts as plant growth media. In: Edwards CA, Neuhauser E (eds) Earthworms in waste and environmental management. SPB Academic Press, The Hague, pp 21–32

    Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interaction between earthworms and microorganisms in organic matter breakdown. Agric Ecosyst Environ 24(1):235–247

    Google Scholar 

  • Edwards CA, Lofty R (1977) The biology of earthworms. Chapman & Hall, London

    Google Scholar 

  • Edwards CA, Dominguez J, Arancon NQ (2004) The influence of vermicomposts on plant growth and pest incidence. In: Shakir Hanna SH, Mikhail WZA (eds) Soil zoology for sustainable development in the 21st century. Safwat H. Shakir Hanna, Cairo, pp 397–418

    Google Scholar 

  • Edwards CA, Arancon NQ, Emerson E, Pulliam R (2007) Supressing plant parasitic nematodes and arthropod pests with vermicompost teas. Biocycle 48(12):38–39

    Google Scholar 

  • Edwards CA, Arancon NQ, Bennett MV, Askar A, Keeney G (2010a) Effect of aqueous extracts from vermicomposts on attacks by cucumber beetles (Acalymna vittatum) (Fabr.) on cucumbers and tobacco hornworm (Manduca sexta) (L.) on tomatoes. Pedobiologia 53:141–148

    Google Scholar 

  • Edwards CA, Arancon NQ, Bennett MV, Askar A, Keeney G, Little B (2010b) Suppression of green peach aphid (Myzus persicae) (Sulz.), citrus mealybug (Planococcus citri) (Risso), and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts. Crop Prot 29(1):80–93

    Google Scholar 

  • Elmer WH (2009) Influence of earthworm activity on soil microbes and soil-borne diseases of vegetables. Plant Dis 93:175–179

    CAS  Google Scholar 

  • Elvira C, Sampedro L, Benítez E, Nogales R (1998) Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot-scale study. Bioresour Technol 63(3):205–211

    CAS  Google Scholar 

  • Fragoyiannis DA, McKinlay RG, D’Mello JPF (2001) Interactions of aphids herbivory and nitrogen availability on the total foliar glycoalkoloid content of potato plants. J Chem Ecol 27(9):1749–1762

    CAS  PubMed  Google Scholar 

  • Gandhi M, Sangwan V, Kapoor KK, Dilbaghi N (1997) Composting of household wastes with and without earthworms. Environ Ecol 15:432–434

    Google Scholar 

  • Ganesh KA, Sekaran G (2005) Enteric pathogen modification by anaecic earthworm, Lampito Mauritii. J Appl Sci Environ Manag 9:15–17

    Google Scholar 

  • Garcia C, Hernandez T, Costa F (1997) Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun Soil Sci Plant Anal 28(1-2):123–134

    CAS  Google Scholar 

  • Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour Technol 97(3):391–395

    CAS  PubMed  Google Scholar 

  • George S, Giraddi RS, Patil RH (2007) Utility of vermiwash for the management of thrips and mites on chilli (Capiscum annum) amended with soil organics. Karnataka J Agric Sci 20(3):657–659

    Google Scholar 

  • Ghosh M, Chattopadhyay GN, Baral K (1999) Transformation of phosphorus during vermicomposting. Bioresour Technol 69(2):149–154

    CAS  Google Scholar 

  • Gopal M, Gupta A, Sunil E, Thomas VG (2009) Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Curr Microbiol 59:15–20

    Google Scholar 

  • Graff O, Makeschin F (1980) Beeinlussung des Ertrags von Weidelgrass (Lolium muttiflorum) Ausscheidungen von Regenwurmen dreier verschiedener Arten. Pedobiologia 20:176–180

    Google Scholar 

  • Hahn H, Bopp M (1968) A cytokinin test with high specificity. Planta 83(1):115–118

    CAS  PubMed  Google Scholar 

  • Hartenstein R (1983) Assimilation by earthworm Eisenia fetida. In: Satchell JE (ed) Earthworm ecology. From Darwin to vermiculture. Chapman & Hall, London, pp 297–308

    Google Scholar 

  • Hashemimajd K, Kalbasi M, Golchin A, Shariatmadari H (2004) Comparison of vermicompost and composts as potting media for growth of tomatoes. J Plant Nutr 27(6):1107–1123

    CAS  Google Scholar 

  • Herms DA (2002) Effects of fertilization on insect resistance of woody ornamental plants. Environ Entomol 31(6):923–933

    Google Scholar 

  • Hoitink HA, Grebus ME (1997) Composts and control of plant diseases. In: Hayes MHB, Wilson WS (eds) Humic substances peats and sludges health and environmental aspects. Royal Society of Chemistry, Cambridge, pp 359–366

    Google Scholar 

  • Hoitink HA, Kuter GA (1986) Effects of composts in growth media on soil-bome pathogens. In: Chen Y, Avnimelech Y (eds) The role of organic matter in modern agriculture. Martinus Nijhoff, Dordrecht, pp 289–306

    Google Scholar 

  • Hoitink HA, Stone AG, Han DY (1997) Suppression of plant diseases by compost. Hort Sci 32(2):184–187

    Google Scholar 

  • Holtzclaw KM, Sposito G (1979) Analytical properties of the metal complexing fractions in sludge-soil mixtures. IV. Determination groups in fulvic acid. Soil Sci Soc Am J 43(2):318–323

    CAS  Google Scholar 

  • Jambhekar H (1992) Use of earthworm as a potential source of decompose organic wastes. Proceeding of the national seminar on organic farming, Coimbatore, pp 52–53

    Google Scholar 

  • Jannsson RK, Smilowitz Z (1986) Influence of nitrogen on population parameters of potato insects: abundance, population growth and within-plant distribution of the green peach aphid, Myzus persicae (Homoptera: Aphididae). Environ Entomol 15:49–55

    Google Scholar 

  • Kale RD, Bano K (1986) Field trials with vermicompost (vee comp. E. 8. UAS). An organic fertilizers. In: Dash MC, Senapati BK, Mishra PC (eds) National Seminar on Organic Waste Utilisation, Part B: Verms and vermicomposting, pp 151–156

    Google Scholar 

  • Kalembasa D (1996) The influence of vermicomposts on yield and chemical composition of tomato. Zesz Probl Post Nauk Roln 437:249–252

    Google Scholar 

  • Kannangara T, Utkhede RS, Paul JW, Punja ZK (2000) Effect of mesophilic and thermophilic composts on suppression of Fusarium root and stem rot of greenhouse cucumber. Can J Microbiol 46(11):1021–1028

    CAS  PubMed  Google Scholar 

  • Kerry B (1988) Fungal parasites of cyst nematodes. Agri Ecosyst Environ 24(1):293–305

    Google Scholar 

  • Kostecka J, Blazej JB, Kolodziej M (1996) Investigations on application of vermicompost in potatoes farming in second year of experiment. Zeszyty Naukowe Akademii Rolniczej W Krakowie 310:69–77

    Google Scholar 

  • Krishnamoorthy RV, Vajranabhiah SN (1986) Biological activity of earthworm casts: an assessment of plant growth promoter levels in casts. Proc Indian Acad Sci (Anim Sci) 95(3):341–335

    Google Scholar 

  • Kristufek V, Ravasz K, Pizl V (1993) Actinomycete communities in earthworm guts and surrounding soil. Pedobiologia 37(6):379–384

    Google Scholar 

  • Kuter GA, Nelson GB, Hoitink HA, Madden LV (1983) Fungal population in container media amended with composted hardwood bark suppressive and conductive to Rhizoctonia damping-off. Phytopathology 73:1450–1456

    Google Scholar 

  • Lazarovits G, Tenuta M, Conn KL, Gullino ML, Katan J, Matta A (2000) Utilization of high nitrogen and swine manure amendments for control of soil-bome diseases: efficacy and mode of action. Acta Hortic 5:559–564

    Google Scholar 

  • Lazcano C, Gomez-Brandon M, Dominguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72(7):1013–1019

    CAS  PubMed  Google Scholar 

  • Madsen EL, Alexander M (1982) Transport ofRhizobium and Pseudomonas through soil. Soil Sci Soc Am J 46:557–560

    Google Scholar 

  • Masciandaro G, Ceccanti B, Gracia C (2000) “In situ” vermicomposting of biological sludges and impacts on soil quality. Soil Biol Biochem 32(7):1015–1024

    CAS  Google Scholar 

  • Meena RN, Singh Y, Singh SP, Singh JP, Singh K (2007) Effect of sources and level of organic manure on yield, quality and economics of garden pea (Pisum sativam L.) in eastern Uttar Pradesh. Veg Sci 34:60–63

    Google Scholar 

  • Mitchell A (1997) Production of Eisenia fetida and vermicompost from feed-lot cattle manure. Soil Biol Biochem 29(3):763–766

    CAS  Google Scholar 

  • Monroy F, Aira M, Domínguez J (2009) Reduction of total coliform numbers during vermicomposting is caused by short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry. Sci Total Environ 407(20):5411–5416

    CAS  PubMed  Google Scholar 

  • Moody SA, Piearce TG, Dighton J (1996) Fate of some fungal spores associated with wheat straw decomposition on passage through the guts of Lumbricus terrestris and Aporrectodea longa. Soil Biol Biochem 28(4):533–537

    CAS  Google Scholar 

  • Morra L, Palumbo AD, Bilotto M, Ovieno P, Ptcascia S (1998) Soil solarization: organic fertilization grafting contribute to build an integrated production system in a tomato-zucchini sequence. Colture-Protette 27:63–70

    Google Scholar 

  • Munnoli PM, Da Silva JAT, Saroj B (2010) Dynamics of the soil-earthworm-plant relationship: a review. Dynamic soil, dynamic plant. pp 1–21

    Google Scholar 

  • Muscolo A, Panuccio MR, Abenavoli MR, Concheri G, Nardi S (1996) Effect of molecular complexity acidity of earthworm faeces humic fractions on glutamale dehydrogenase, glutamine synthetase, and phosphoenolpyruvate carboxylase in Daucus carota II cells. Biol Fertil Soils 22(1-2):83–88

    CAS  Google Scholar 

  • Nagavallemma KP, Wani SP, Stephane L, Padmaja VV, Vineela C, Babu Rao M, Sahrawat KL (2004) Vermicomposting: recycling wastes into valuable organic fertilizer. Global Theme on Agrecosystems Report no. 8, Patancheru 502324. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, pp 20

    Google Scholar 

  • Nakamura Y (1996) Interactions between earthworms and microorganisms in biological control of plant root pathogens. Farming Jpn 30:37–43

    Google Scholar 

  • Nakasone AK, Bettiol W, de Souza RM (1999) The effect of water extracts of organic matter on plant pathogens. Summa Phytopathol 25:330–335

    Google Scholar 

  • Nardi S, Dell’Agnola G, Nuti PM (1983) Humus production from farmyard wastes by vermicomposting. Proceedings of international symposium on agricultural and environmental prospects in earthworm farming. Rome, Italy, pp 87–94

    Google Scholar 

  • Ndegwa PM, Thompson SA, Das KC (2000) Effects of stocking density and feeding rate on vermicomposting of bio-solids. Bioresour Technol 71(1):5–12

    CAS  Google Scholar 

  • Nechitaylo TY, Yakimov MM, Godinho M, Timmis KN, Belogolova E, Byzov BA, Kurakov AV, Jones DL, Golyshin PN (2010) Effect of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on bacterial diversity in soil. Microbial Ecol 59(3):574–587

    Google Scholar 

  • Nielson RL (1965) Presence of plant growth substances in earthworms demonstrated by paper chromatography and the Went pea test. Nature 208:1113–1114

    Google Scholar 

  • Padmavathiamma PK, Li LY, Kumari UR (2008) An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresour Technol 99(6):1672–1681

    CAS  PubMed  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1(1):1–19

    Google Scholar 

  • Pathma J, Sakthivel N (2013) Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl Soil Ecol 70:33–47

    Google Scholar 

  • Pitt D, Tilston EL, Groenhof AC, Szmidt RA (1998) Recycled organic materials (ROM) in the control of plant disease. Acta Hortic 469:391–403

    Google Scholar 

  • Pramanik P, Ghosh GK, Ghosal PK, Banik P (2007) Changes in organic—C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresour Technol 98(13):2485–2494

    CAS  PubMed  Google Scholar 

  • Raguchander T, Rajappan K, Samiyappan R (1998) Influence of biocontrol agents and organic amendments on soybean root rot. Int J Trop Agric 16:247–252

    Google Scholar 

  • Ramesh P (2000) Effects of vermicomposts and vermicornposting on damage by sucking pests to ground nut (Arachis hypogea). Indian J Agric Sci 70(5):334

    Google Scholar 

  • Rao KR (2002) Induced host plant resistance in the management sucking pests of groundnut. Ann Plant Protect Sci 10(1):45–50

    Google Scholar 

  • Rao KR (2003) Influence of host plant nutrition on the incidence of Spodoptera litura and Helicoverpa armigera on groundnuts. Indian J Entomol 65:386–392

    Google Scholar 

  • Rao KR, Rao PA, Rao KT (2001) Influence of fertilizers and manures on the population of coccinellid beetles and spiders in groundnut ecosystem. Ann Plant Protect Sci 9:43–46

    Google Scholar 

  • Reynolds J (1994) Earthworms of the world. Global Biodiversity 4(1):11–16

    Google Scholar 

  • Ribeiro CF, Mizobutsi EH, Silva DG, Pereira JCR, Zambolim L (1998) Control of Meloidognye javanica on lettuce with organic amendments. Fitopatol Brasileira 23:42–44

    Google Scholar 

  • Riffaldi R, Levi-Minzi R (1983) Osservazioni preliminari sul ruolo dell Eisenia foetida nell’umificazione del letame. Agrochimica 27:271–274

    Google Scholar 

  • Rivera AMC, Wright ER, Lopez MV, Fabrizio MC (2004) Temperature and dosage dependent suppression of damping-off caused by Rhizoctonia solani in vermicompost amended nurseries of white pumpkin. Phyton 73:131–136

    Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic amendments to soil as nematode suppressants. J Nematol 18(2):129–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JA, Zavaleta E, Sanchez P, Gonzalez H (2000) The effect of vermicomposts on plant nutrition, yield and incidence of root and crown rot of gerbera (Gerbera jamesonii H. Bolus). Fitopatol 35(1):66–79

    Google Scholar 

  • Rouelle J (1983) Introduction of an amoeba and Rhizobium Japonicum into the gut of Eisenia foetida  (Sav.) and Lumbricus terrestris  L. In: Satchel1 JE (ed) Earthworm ecology: From Darwin to vermiculture, Chapman and Hall, New York, pp 375–381

    Google Scholar 

  • Sánchez-Monedero MA, Roig A, Paredes C, Bernal MP (2001) Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour Technol 78(3):301–308

    PubMed  Google Scholar 

  • Scheuerell SJ, Sullivan DM, Mahaffee WF (2005) Suppression of seedling damping-off caused by Pythium ultimum, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathol 95(3):306–315

    Google Scholar 

  • Sembdner G, Borgman E, Schneider G, Liebisch HW, Miersch O, Adam G, Lischewski M, Schieber K (1976) Biological activity of some conjugated gibberellins. Planta 132:249–257

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69(2):167–179

    CAS  Google Scholar 

  • Sidhu J, Gibbs RA, Ho GE, Unkovich I (2001) The role of indigenous microorganisms in suppression of Salmonella regrowth in composted bio-solids. Water Res 35(4):913–920

    CAS  PubMed  Google Scholar 

  • Simsek-Ersahin EY, Haktanir K, Yanar Y (2009) Vermicompost suppresses Rhizoctonia solani Kuhn in cucumber seedlings. J Plant Dis Protect 4(116):182–188

    Google Scholar 

  • Singh UP, Maurya S, Singh DP (2003) Antifungal activity and induced resistance in pea by aqueous extract of vermicompost and for control of powdery mildew of pea and balsam. J Plant Dis Protect 110:544–553

    Google Scholar 

  • Singh R, Sharma RR, Kumar S, Gupta RK, Patil RT (2008) Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresour Technol 99(17):8507–8511

    CAS  PubMed  Google Scholar 

  • Singleton DR, Hendrix PF, Coleman DC, Whitman WB (2003) Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol Biochem 35(12):1547–1555

    CAS  Google Scholar 

  • Sinha RK, Heart S, Agarwal S, Asadi R, Carretero E (2002) Vermiculture technology for environmental management: study of the action of the earthworms Eisenia foetida, Eudrilus euginae and Perionyx excavatus on biodegradation of some community wastes in India and Australia. Environmentalist 22:261–268

    Google Scholar 

  • Sinha RK, Bharambe G, Chaudhari U (2008) Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist 28(4):409–420

    Google Scholar 

  • Sinha RK, Agarwal S, Chauhan K, Valani D (2010) The wonders of earthworms and its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers from agriculture. Agric Sci 1:76–94

    Google Scholar 

  • Stephens PM, Davoren CW, Doube BM, Ryder MH (1993) Reduced superiority of Rhizoctonia solani disease on wheat seedlings associated with the presence of the earthworm Aporrectodea trapezoids. Soil Biol Biochem 11:1477–1484

    Google Scholar 

  • Stephens PM, Davoren CW, Ryder MH, Doube BM (1994) Influence of the earthworm Aporrectodea trapezoides (Lumbricidae) on the colonization of alfalfa (Medicago sativa L.) roots by Rhizobium melilotti  strain LS-30R and the survival of L5-30R in soil. Biol Fertil Soils 18:63–70

    Google Scholar 

  • Stone AG, Scheurell SJ, Darby HM (2004) Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping and other cultural practices. In: Magdoff F, Weil R (eds) Soil organic matter in sustainable agriculture. CRC, Boca Raton, pp 131–177

    Google Scholar 

  • Subler S, Edwards CA, Metzger PJ (1998) Comparing vermicomposts and composts. Biocycle 39:63–66

    CAS  Google Scholar 

  • Suhane RK (2007) Vermicompost. Publication of Rajendra Agriculture University, Pusa, pp 88

    Google Scholar 

  • Suthar S (2010) Evidence of plant hormone like substances in vermiwash: an ecologically safe option of synthetic chemicals for sustainable farming. J Ecol Eng 36(8):1089–1092

    Google Scholar 

  • Swathi P, Rao KT, Rao PA (1998) Studies on control of root-knot nematode Meloidogyne incognita in tobacco miniseries. Tobacco Res 1:26–30

    Google Scholar 

  • Szczech MM (1999) Suppressiveness of vermicomposts against fusarium wilt of tomato. J Phytopathol 147:155–161

    CAS  Google Scholar 

  • Szczech M, Smolinska U (2001) Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora nicotianae Breda de Haan var. nicotiannae. J Phytopathol 149:77–82

    Google Scholar 

  • Szczech M, Rondomanski W, Brzeski MW, Smolinska U, Kotowski JF (1993) Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biol Agric Hortic 10(1):47–52

    Google Scholar 

  • Thoden TC, Korthals GW, Termorshuizen (2011) Organic amendments and their influences on plant-parasitic and free living nematodes: a promising method for nematode management. Nematology 13:133–153

    Google Scholar 

  • Tiquia SM (2005) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99(4):816–828

    CAS  PubMed  Google Scholar 

  • Tomati U, Grapppelli A, Galli E (1987) The presence of growth regulators in earthworm worked waste. In: Bonvicini Paglioi AM, Omodeo P (eds) Proceedings of international symposium on earthworms, selected symposia and monographs, Union Zoologica Italian, 2. Modena, Mucchi, pp 423–435

    Google Scholar 

  • Tomati U, Grapppelli A, Galli E (1988) The hormone-like effect of earthworm casts on plant growth. Biol Fertil Soils 5(4):288–294

    CAS  Google Scholar 

  • Toyota K, Kimura M (2000) Microbial community indigenous to the earthworm Eisenia foetida. Biol Fertil Soils 31(1-3):187–190

    Google Scholar 

  • Umesh BM, Lalji KV, Jitendra NS (2006) Effects of vermicomposting on microbiological flora of infected biomedical waste. ISHWM J 5(1):28–33

    Google Scholar 

  • Utkhede R, Koch C (2004) Biological treatments to control bacterial canker of greenhouse tomatoes. Biocontrol 49(3):305–313

    Google Scholar 

  • Vaz-Moreira I, Maria E, Silva CM, Manaia Olga C, Nunes (2008) Diversity of bacterial isolates from commercial and homemade Composts. Microb Ecol 55(4):714–722

    PubMed  Google Scholar 

  • Vinceslas-Akpa M, Loquet M (1997) Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida): Chemical analysis and 13C PMAS NMR spectroscopy. Soil Biol Biochem 29:751–758

    CAS  Google Scholar 

  • Vivas A, Moreno B, Garcia-Rodriguez S, Benitez E (2009) Assessing the impact of composting and vermicomposting on bacterial community size and structure, and functional diversity of an olive-mill waste. Bioresour Technol 100(3):1319–1326

    CAS  PubMed  Google Scholar 

  • Wahla V, Maheshwari DK, Bajpai VK (2012) Nematicidal fluorescent pseudomonads for the in vitro and in vivo suppression of root knot (Meloidogyne incognita) of Capsicum annuum L. Pest Manag Sci 68(8):1148–1155

    CAS  PubMed  Google Scholar 

  • Weltzien HC (1989) Some effects of composted organic materials on plant health. Agric Ecosyst Environ 27:439–446

    Google Scholar 

  • Yardim EN, Arancon NQ, Edwards CA, Oliver TJBRJ (2006) Suppression of tomato hornworm (Manduca quinquemaculata) and cucumber beetles (Acalymma vittatum and Diabotrica undecimpunctata) populations and damage by vermicomposts. Pedobiologia 50:23–29

    Google Scholar 

  • Yasir M, Aslam Z, Kim SW, Lee SW, Jeon CO, Chung YR (2009) Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour Technol 100(19):4396–4403

    CAS  PubMed  Google Scholar 

  • Zhang BG, Li GT, Shen TS, Wang JK, Sun Z (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia foetida. Soil Biol Biochem 32(14):2055–2062

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Sakthivel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pathma, J., Sakthivel, N. (2014). Microbial and Functional Diversity of Vermicompost Bacteria. In: Maheshwari, D. (eds) Bacterial Diversity in Sustainable Agriculture. Sustainable Development and Biodiversity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-05936-5_9

Download citation

Publish with us

Policies and ethics