Skip to main content

A Genetic Algorithm Approach for the Rigorous Registration of Arbitrary Laser Scanner Point Clouds

  • Chapter
  • First Online:
Computational Engineering

Abstract

Terrestrial laser scanners have achieved great popularity in the last decade. Their easy on-site application and the possibility of flexible and high quality post processing added to their success in several fields such as architectural, archaeological, and heritage documentation. We present a method for handling the automatic registration of point clouds which are characterized by significant noise level, generally imperfect geometry and occlusions. Hereby we combine and extend already existing and established methods to facilitate the registration of point clouds without prior pre-processing. Our approach consists—similar to other methods—of three steps which are scan analysis, pair-wise registration, and global registration. To handle the abovementioned datasets we propose to use imperfect and subdivided features, and to implement Genetic Algorithms (GAs). At the same time our approach can be seen as extension to already known Genetic Algorithms used for the registration of point clouds. By implementing an adapted version of a Genetic Algorithm in the classical registration process between rough alignment and fine registration, we are able to maintain robustness and computational performance also when registering point clouds of bigger objects characterized by a notably increased number of points, a significant noise level, and occlusions. We show and discuss the successful application of the algorithm on a scene which does not consist of classical geometric primitives such as planes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bae, K.-H.: Automated registration of unorganised point clouds from terrestrial laser scanners. Ph.D. thesis, Curtin University of Technology (2006)

    Google Scholar 

  3. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. Brenner, C., Dold, C.: Automatic relative orientation of terrestrial laser scans using planar structures and angle constraints. In: Proceedings of the ISPRS Workshop ‘Laser Scanning 2007 and SilviLaser 2007’, Espoo, vol. XXXVI, Part 3 / W52 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 84–89 (2007)

    Google Scholar 

  6. Brenner, C., Dold, C., Ripperda, N.: Coarse orientation of terrestrial laser scans in urban environments. ISPRS J. Photogram. Rem. Sens. 63(1), 4–18 (2008)

    Article  Google Scholar 

  7. Brunnström, K., Stoddart, A.J.: Genetic algorithms for free-form surface matching. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 1996

    Google Scholar 

  8. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  9. Chen, C.-S., Hung, Y.-P., Cheng, J.-B.: RANSAC-based DARCES: a new approach to fast automatic registration of partially overlapping range images. IEEE Trans. Pattern Anal. Mac. Intell. 21(11), 1229–1234 (1999)

    Article  Google Scholar 

  10. Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

    Article  Google Scholar 

  11. Chow, C., Tsui, H., Lee, T.: Surface registration using a dynamic genetic algorithm. Pattern Recognit. 37(1), 105–117 (2004)

    Article  MATH  Google Scholar 

  12. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)

    Article  Google Scholar 

  13. Cordón, O., Damas, S., Santamaría, J.: Feature-based image registration by means of the CHC evolutionary algorithm. Image Vis. Comput. 24(5), 525–533 (2006)

    Article  Google Scholar 

  14. Deschaud, J.-E.: A fast and accurate plane detection algorithm for large noisy point clouds using filtered normals and voxel growing. In: 3DPVT’10: Proceedings of the 5th International Symposium on 3D Data Processing, Visualization and Transmission, Espace Saint-Martin, Paris (2010)

    Google Scholar 

  15. Dold, C., Brenner, C.: Registration of terrestrial laser scanning data using planar patches and image data. In: Proceedings of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, Dresden, vol. XXXVI, Part 5 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (2006)

    Google Scholar 

  16. Dumitrescu, D., Lazzerini, B., Jain, L.C., Dumitrescu, A.: Evolutionary Computation. CRC Press, Boca Raton (2000)

    Google Scholar 

  17. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  18. Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.: Geometrically stable sampling for the ICP algorithm. In: 3DIM 2003: Proceedings of the 4th International Conference on 3-D Digital Imaging and Modeling, Banff, Alberta, pp. 260–267 (2003)

    Google Scholar 

  19. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: SGP 2005: Proceedings of the 3rd Eurographics Symposium on Geometry Processing 2005, pp. 197–206. Vienna (2005)

    Google Scholar 

  20. Gordon, B.: Zur Bestimmung von Messunsicherheiten terrestrischer Laserscanner. Ph.D. thesis, Technische Universität Darmstadt (2008)

    Google Scholar 

  21. Grussenmeyer, P., Hanke, K.: Einsatz eines TLS-Systems in der Ingenieurvermessung. In: Chesi, G., Weinold, T. (eds.) 14. Internationale Geodätische Woche Obergurgl 2007, pp. 21–30 (2007)

    Google Scholar 

  22. Grussenmeyer, P., Landes, T., Voegtle, T., Ringle, K.: Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. In: Proceedings of the ISPRS Commission V Congress, Beijing, vol. XXXVII, Part B5 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 213–218 (2008)

    Google Scholar 

  23. Hanke, K., Grussenmeyer, P., Grimm-Pitzinger, A., Weinold, T.: First experience with the trimble GX Laser Scanner. In: Proceedings of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, Dresden, Germany, vol. XXXVI, Part 5 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (2006)

    Google Scholar 

  24. Hanke, K., Moser, M., Grimm-Pitzinger, A., Goldenberg, G., Toechterle, U.: Enhanced potential for the analysis of archaeological finds based on 3D modeling. In: Proceedings of the ISPRS Commission V Congress, Beijing, vol. XXXVII, Part B5 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 187–192 (2008)

    Google Scholar 

  25. Hanke, K., Hiebel, G., Kovács, K., Moser, M.: Surveying and geoinformation - contributions to an interdisciplinary special research program on the history of mining activities. In: Proceedings of the 22nd CIPA Symposium, vol. XXII-2009 of The ISPRS International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences and The CIPA International Archives for Documentation of Cultural Heritage (2009)

    Google Scholar 

  26. Hanke, K., Hiebel, G., Kovács, K., Moser, M.: Documentation challenges in an international and interdisciplinary research project. In: Proceedings of the ISPRS Commission V Midterm-Symposium in Newcastle upon Thyne, UK, vol. 39 (5) of The ISPRS International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences and The CIPA International Archives for Documentation of Cultural Heritage (2010)

    Google Scholar 

  27. Hanke, K., Stöllner, T., Kovács, K., Moser, M.: Combination of different surveying methods for archaeological documentation: the case study of the bronze age wooden chest from Mitterberg. In: Contreras, F., Melero, F.J. (eds.) Proceedings of the 38th Annual Conference and Computer Applications and Quantitative Methods in Archaeology, BAR International Series 2494. Archaeopress, Oxford (2013)

    Google Scholar 

  28. Haring, A.: Die Orientierung von Laserscanner- und Bilddaten bei der fahrzeuggestützten Objekterfassung. Ph.D. thesis, Technische Universität Wien (2007)

    Google Scholar 

  29. He, W., Ma, W., Zha, H. Automatic registration of range images based on correspondence of complete plane patches.In: 3DIM 2005: Proceedings of the 5th International Conference on 3-D Digital Imaging and Modeling, Ottawa, pp. 470–475 (2005)

    Google Scholar 

  30. Heine, E., van Genechten, B., Lerma García, J.L., Santana Quintero, M.: Theorie und Praxis des terrestrischen Laserscannings: Deutsche Version des Theorieteils und des praktischen Trainingteils Kirche St. James aus der DVD-Publikation: Theory and practice on Terrestrial Laser Scanning (5 languages), vol. 152. Universidad Politécnica de Valencia, Valencia (2008)

    Google Scholar 

  31. Hofer, M., Pottmann, H.: O Laserscanner-Punktwolken. Vermessung Geoinformation 91, 297–306 (2003)

    Google Scholar 

  32. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor and Michigan (1975)

    Google Scholar 

  33. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opical Soc. Am. 4(4), 629–642 (1987)

    MathSciNet  Google Scholar 

  34. Huang, C.-W.: The application of genetic algorithms in rough registration of three-dimensional range images. Ph.D. thesis, Taiwan University (2002)

    Google Scholar 

  35. Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. In: SIGGRAPH 2006: Proceedings of the 33rd International Conference and Exhibition on Computer Graphics and Interactive Techniques, Boston (2006)

    Google Scholar 

  36. Johnson, A.E.: Spin-images: a representation for 3-D surface matching. Ph.D. thesis, Carnegie Mellon University, Pittsburgh and Pennsylvania (1997)

    Google Scholar 

  37. Kitamura, K., D’Apuzzo, N., Kochi, N., Kaneko, S.: Automated extraction of break lines in TLS data of real environment. In: Proceedings of the ISPRS Commission V Mid-Term Symposium ‘Close Range Image Measurement Techniques’, Newcastle upon Tyne, UK, vol. XXXVIII, Part 5 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (2010)

    Google Scholar 

  38. Kovács, K., Moser, M., Hanke, K.: Application of laser scanning for archaeological prospection and 3D documentation. In: Museen der Stadt Wien - Stadtarchäologie, Workshop 14 - Archäologie und Computer 2009. Phoibos, Wien (2009)

    Google Scholar 

  39. Lange, C., Polthier, K.: Anisotropic smoothing of point sets. Comput. Aided Geometric Des. 22(7), 680–692 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lomonosov, E., Chetverikov, D., Ekárt, A.: Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognit. Lett. 27(11), 1201–1208 (2006)

    Article  Google Scholar 

  41. Moser, M., Hye, S., Goldenberg, G., Hanke, K., Kovács, K.: Digital documentation and visualization of archaeological excavations and finds using 3D scanning technology. In: Proceedings of ARQUEOLOGICA 2.0 (1st International Meeting on Graphic Archaeology and Informatics, Cultural Heritage and Innovation) (2009)

    Google Scholar 

  42. Neugebauer, P.J.: Reconstruction of real-world objects via simultaneous registration and robust combination of multiple range images. Int. J. Shape Model. 3, 71–90 (1997)

    Article  Google Scholar 

  43. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature extraction on point-sampled surfaces. In: EG 2003: Proceedings of the Eurographics 2003, pp. 281–289. Granada (2003)

    Google Scholar 

  44. Pottmann, H., Leopoldseder, S., Hofer, M.: Simultaneous registration of multiple views of a 3D object. In: PCV02: Proceedings of the ISPRS Commission III Symposium ‘Photogrammetric Computer Vision’, Graz, Austria, vol. XXXIV, Part 3 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 265–270 (2002)

    Google Scholar 

  45. Pulli, K.: Multiview registration for large data sets. In: 3DIM’99: Proceedings of the 2nd International Conference on 3-D Digital Imaging and Modeling, Ottawa, pp. 160–168 (1999)

    Google Scholar 

  46. Rabbani, T.: PROTO: Pointcloud Processing Toolbox (Matlab). http://viztronics.com/tahir/data/PROTO/doc/menu.html (2003). Accessed 18 Apr 2014

  47. Rabbani, T.: Automatic reconstruction of industrial installations using point clouds and images. Ph.D. thesis, TU Delft, The Netherlands (2006)

    Google Scholar 

  48. Rabbani, T., Dijkman, S., van Den Heuvel, F., Vosselman, G.: An integrated approach for modelling and global registration of point clouds. ISPRS J. Photogram. Rem. Sens. 61(6), 355–370 (2007)

    Article  Google Scholar 

  49. Reed, M.B., Schenk, S., Swoboda, G.: FTO: A genetic algorithm for tunnel design optimisation. In: GECCO 2005: Late breaking papers of the Genetic and Evolutionary Computation Conference, Washington, DC (2005)

    Google Scholar 

  50. Remondino, F.: Image-based modeling for object and human reconstruction. Ph.D. thesis, Swiss Federal Institute of Technology (ETH) Zurich (2006)

    Google Scholar 

  51. Rietdorf, A.: Automatisierte Auswertung und Kalibrierung von scannenden Messsystemen mit tachymetrischem Messprinzip. Ph.D. thesis, Technische Universität Berlin (2005)

    Google Scholar 

  52. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3DIM 2001: Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modeling, Québec City, pp. 145–152 (2001)

    Google Scholar 

  53. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 25(5), 578–596 (2007)

    Article  Google Scholar 

  54. Schenk, S.: Automatische Registrierung von Punktwolken: Genetische Algorithmen mit genäherten und unterteilten Merkmalen. Ph.D. thesis, Universität Innsbruck (2010)

    Google Scholar 

  55. Silva, L., Bellon, O.R.P., Boyer, K.L.: Robust range image registration using genetic algorithms and the surface interpenetration measure. Series in Machine Perception and Artificial Intelligence, vol. 60. World Scientific, Hackensack (2005)

    Google Scholar 

  56. Stamos, I., Leordeanu, M.: Automated feature-based range registration of urban scenes of large scale. In: CVPR 2003: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison (2003)

    Google Scholar 

  57. Stöllner, T.: Bronzezeitliche Massenproduktion von Kupfer am Mitterberg. Archäologie Deutschland 4, 32–33 (2008)

    Google Scholar 

  58. Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P.: Hough-transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from Lidar data. In: Proceedings of the ISPRS Workshop ‘Laser Scanning 2007 and SilviLaser 2007’, Espoo, vol. XXXVI, Part 3 / W52 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 407–412 (2007)

    Google Scholar 

  59. Toldo, R., Beinat, A., Crosilla, F.: Global registration of multiple point clouds embedding the Generalized Procrustes Analysis into an ICP framework. In: 3DPVT’10: Proceedings of the 5th International Symposium on 3D Data Processing, Visualization and Transmission, Espace Saint-Martin, Paris (2010)

    Google Scholar 

  60. Vieira, M., Shimada, K.: Surface extraction from point-sampled data through region growing. Int. J. CAD/CAM 5(1), 19–27 (2005)

    Google Scholar 

  61. von Hansen, W.: Robust automatic marker-free registration of terrestrial scan data. In: PCV’06: Proceedings of the ISPRS Symposium of Commission III ‘Photogrammetric Computer Vision and Image Analysis’, Bonn, vol. XXXVI, Part 3 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 105–110 (2006)

    Google Scholar 

  62. von Hansen, W., Gross, H., Thoennessen, U.: Line-based registration of terrestrial and airborne LIDAR data. In: Proceedings of the ISPRS Commission III Congress, Beijing, vol. XXXVII, Part B3 of IAPRS, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 161–166 (2008)

    Google Scholar 

  63. Vosselman, G., Maas, H.: Airborne and Terrestrial Laser Scanning. Whittles Publishing, Dunbeath (2010)

    Google Scholar 

  64. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The dataset discussed in this article was provided by SFB HiMAT, the Special Research Program on the HiMAT. The project was mainly funded by the Austrian Science Fund (FWF), TransIDEE (the Science and Technology Transfer Center of the University of Innsbruck), the regional authorities of Tyrol, Salzburg, and Vorarlberg as well as the Autonomous Province Bolzano/South-Tyrol (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hanke, K., Schenk, S. (2014). A Genetic Algorithm Approach for the Rigorous Registration of Arbitrary Laser Scanner Point Clouds. In: Hofstetter, G. (eds) Computational Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05933-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05933-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05932-7

  • Online ISBN: 978-3-319-05933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics