Skip to main content

Constitutive Models in Finite Element Codes

  • Chapter
  • First Online:
Computational Engineering
  • 1384 Accesses

Abstract

In finite element simulations the constitutive information is usually handled by a user-supplied subroutine. For a prescribed strain increment, this subroutine provides the finite element code with the corresponding stress increment and the Jacobian, which is required to build the consistent tangent operator. We propose an approach that relieves the user from computing and coding the Jacobian information. Instead, this information is computed automatically together with the stress increment. This approach requires reliable and efficient numerical integration. In particular, adaptivity and automatic error control are highly desirable features. Such integrators are presented in this article. The underlying ideas of the approach are first elucidated at simple one-dimensional problems from geotechnics. However, it is also discussed how this concept can be used in a fully three-dimensional framework. We expect that this new approach will strongly enhance the development of constitutive models and help to identify the most appropriate ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By the term implementation we understand the whole process of developing the interface module: selecting an appropriate integration scheme, coding the scheme, and testing it at the levels of integration points, elements, and full initial-boundary value problems.

  2. 2.

    In the theory of initial value problems, it is common to call the independent variable Ï„ time. We will follow this tradition in our article. In all the applications we have in mind, however, the role of Ï„ is not that of a physical time but of a variable that parameterizes the loading and unloading processes.

  3. 3.

    These states are then to be determined by some iterative process, which might be time consuming.

References

  1. Abaqus: User’s manual, version 5.8, volume 3. HKS Inc., Hibbit, Karlson & Sorenson, Rhode Island, USA (1998)

    Google Scholar 

  2. Duncan, J.M., Chang, C.Y.: Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div. ASCE 96(SM5), 1629–1653 (1970)

    Google Scholar 

  3. Fellin, W.: Hypoplastizität für Einsteiger. Bautechnik 77(1), 10–14 (2000)

    Article  Google Scholar 

  4. Fellin, W.: Hypoplasticity for beginners. University of Innsbruck (2002). ftp.uibk.ac.at/pub/uni-innsbruck/igt/publications/_fellin/hypo_beginner.pdf

  5. Fellin, W., Mittendorfer, M., Ostermann, A.: Adaptive integration of constitutive rate equations. Comput. Geotechnics 36, 698–708 (2009)

    Article  Google Scholar 

  6. Fellin, W., Mittendorfer, M., Ostermann, A.: Adaptive integration of hypoplasticity. In: Benz, T., Nordal, S. (eds.) Numerical Methods in Geotechnical Engineering (NUMGE 2010), pp. 15–20. CRC Press/Balkema, London (2010)

    Google Scholar 

  7. Fellin, W., Ostermann, A.: Consistent tangent operators for constitutive rate equations. Int. J. Numer. Anal. Methods Geomech. 26, 1213–1233 (2002)

    Google Scholar 

  8. Fellin, W., Ostermann, A.: Using constitutive models of the rate type in implicit finite-element calculations: error-controlled stress update and consistent tangent operator. In: Kolymbas, D. (ed.) Advanced Mathematical and Computational Geomechanics. Lecture Notes in Applied and Computational Mechanics. vol. 13, pp. 211–237. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Fellin, W., Ostermann, A.: Parameter sensitivity in finite element analysis with constitutive models of the rate type. Int. J. Numer. Anal. Methods Geomech. 30, 91–112 (2006)

    Article  MATH  Google Scholar 

  10. Gurtin, M., Spear, K.: On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19(5), 437–444 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hairer, E., Nørsett, S., Wanner., G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    Google Scholar 

  12. Hairer, E., Wanner., G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, Berlin (1991)

    Google Scholar 

  13. Herle, I.: Hypoplastizität und Granulometrie einfacher Korngerüste. Veröffentlichung des Institutes für Bodenmechanik und Felsmechanik, vol. 142. Universität Fridericiana in Karlsruhe (1997)

    Google Scholar 

  14. Kolymbas, D.: A generalized hypoelastic constitutive law. In: Proc. XI Int. Conf. Soil Mechanics and Foundation Engineering, San Francisco, vol. 5, p. 2626. Balkema, Rotterdam (1985)

    Google Scholar 

  15. Kolymbas, D.: Introduction to Hypoplasticity. No. 1 in Advances in Geotechnical Engineering and Tunnelling. Balkema, Rotterdam (2000)

    Google Scholar 

  16. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Mater. 2(4), 279–299 (1997)

    Article  Google Scholar 

  17. Schanz, T., Vermeer, P.A., Bonnier, P.G.: The hardening soil model: formulation and verification. In: Brinkgreve, R.B.J. (ed.) Beyond 2000 in Computational Geotechnics, pp. 281–296. A. A. Balkema Publishers, Rotterdam (1999)

    Google Scholar 

  18. Simo, J., Huges, T.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  19. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin, Heidelberg (1965)

    Google Scholar 

  20. von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Fellin .

Editor information

Editors and Affiliations

Appendix: Hypoplastic Models

Appendix: Hypoplastic Models

For the sake of completeness, we outline the used hypoplastic model and the parameters used for our calculations. Tensors of second order are denoted with bold letters (e.g., \(\mathbf{D},\mathbf{T},\boldsymbol{\delta },\mathbf{N}\)) and tensors of fourth order with calligraphic letters (e.g., \(\mathcal{L},\mathcal{M}\)). Different kinds of tensorial multiplication are used: \(\mathbf{TD} = T_{\mathit{ij}}D_{kl}\), \(\mathbf{T}: \mathbf{D} = T_{\mathit{ij}}D_{\mathit{ij}}\), \(\mathcal{L}: \mathbf{D} = L_{ijkl}D_{kl}\), \(\mathbf{T} \cdot \mathbf{D} = T_{\mathit{ij}}D_{jk}\). The Euclidian norm of a tensor is \(\|\mathbf{D}\| = \sqrt{D_{\mathit{ij } } D_{\mathit{ij }}}\). Unit tensors of second and fourth orders are denoted by I and \(\mathcal{I}\), respectively.

1.1.1 A.1 Basic Model

The basic hypoplastic model was proposed in [20]:

$$\displaystyle{ \mathring{\mathbf{T}} = \mathcal{L}(\mathbf{T},e): \mathbf{D} + \mathbf{N}(\mathbf{T},e)\|\mathbf{D}\| }$$
(1.125)

with the linear term

$$\displaystyle{ \mathcal{L} = f_{s} \frac{1} {\hat{\mathbf{T}}:\hat{ \mathbf{T}}}\Big({F}^{2}\mathcal{I} + {a}^{2}\hat{\mathbf{T}}\hat{\mathbf{T}}\Big) }$$
(1.126)

and the nonlinear term

$$\displaystyle{ \mathbf{N} = f_{s}f_{d} \frac{aF} {\hat{\mathbf{T}}:\hat{ \mathbf{T}}}\Big(\hat{\mathbf{T}} +\hat{{ \mathbf{T}}}^{{}^{{\ast}} }\Big)\,. }$$
(1.127)

The employed stress variables are defined as follows

$$\displaystyle{ \hat{\mathbf{T}} = \frac{\mathbf{T}} {\mbox{ tr}\,\mathbf{T}}\,,\qquad \hat{{\mathbf{T}}}^{{}^{{\ast}} } =\hat{ \mathbf{T}} -\frac{1} {3}\mathbf{I}\,. }$$

The factors for pressure and density dependency (barotropy and pyknotropy) are given by

$$\displaystyle{ \begin{array}{c} a = \frac{\sqrt{3}(3-\sin \varphi _{c})} {2\sqrt{2}\sin \varphi _{c}} \,,\qquad f_{d} ={ \left ( \frac{e-e_{d}} {e_{c}-e_{d}}\right )}^{\alpha }, \\ f_{s} = \frac{h_{s}} {n}{ \left (\frac{e_{i}} {e} \right )}^{\beta }\frac{1+e_{i}} {e_{i}}{ \left (\frac{-\mbox{ tr}\,\mathbf{T}} {h_{s}} \right )}^{1-n}{\Bigg[3 + {a}^{2} - a\sqrt{3}{\left (\frac{e_{i0}-e_{d0}} {e_{c0}-e_{d0}} \right )}^{\alpha }\Bigg]}^{-1}. \end{array} }$$

The factor F for adapting the deviatoric yield surface to that of Matsuoka–Nakai is

$$\displaystyle{ F = \sqrt{\frac{1} {8}{\tan }^{2}\psi + \frac{2 {-\tan }^{2}\psi } {2 + \sqrt{2}\tan \psi \cos 3\theta }} - \frac{1} {2\sqrt{2}}\tan \psi }$$

with

$$\displaystyle{ \tan \psi = \sqrt{3}\,\big\|\hat{{\mathbf{T}}}^{{}^{{\ast}} }\big\|\quad \mbox{ and}\quad \cos 3\theta = -\sqrt{6}\frac{\mbox{ tr}\,(\hat{{\mathbf{T}}}^{{}^{{\ast}} }\cdot \hat{{\mathbf{T}}}^{{}^{{\ast}} }\cdot \hat{{\mathbf{T}}}^{{}^{{\ast}} })} {{\big[\hat{{\mathbf{T}}}^{{}^{{\ast}}}:\hat{{ \mathbf{T}}}^{{}^{{\ast}}}\big]}^{3/2}} \,. }$$

The void ratios are assumed to fulfill the compression model

$$\displaystyle{ \frac{e_{i}} {e_{i0}} = \frac{e_{c}} {e_{c0}} = \frac{e_{d}} {e_{d0}} =\exp \left [-{\left (\frac{-\mbox{ tr}\,\mathbf{T}} {h_{s}} \right )}^{n}\right ]\,. }$$
(1.128)

This hypoplastic relation has eight parameters: the critical friction angle \(\varphi _{c}\), the granular hardness h s , the void ratios e i0, e c0, and e d0, and the exponents n, α, and β. They can be determined easily from simple index and element tests [13].

Since the mass is assumed to remain constant, the evolution of the void ratio e is described by

$$\displaystyle{ \dot{e} = (1 + e)\,\mbox{ tr}\,\mathbf{D}\,. }$$
(1.129)

1.1.2 A.2 Extended Hypoplastic Model

The here used extended version of hypoplasticity with intergranular strain was proposed in [16]. The general stress–strain relation is written as

$$\displaystyle{ \mathring{\mathbf{T}} = \mathcal{M}: \mathbf{D}\,, }$$
(1.130)

where \(\mathcal{M}\) is a fourth-order tensor that represents the stiffness. It depends on the hypoplastic tensors \(\mathcal{L}(\mathbf{T},e)\) and N(T, e) and is defined as follows:

$$\displaystyle{ \begin{array}{rcl} \mathcal{M}& =&\big[{\rho }^{\chi }m_{T} + (1 {-\rho }^{\chi })m_{R}\big]\mathcal{L} + \\ & &\quad \left \{\begin{array}{ll} {\rho }^{\chi }(1 - m_{ T})\mathcal{L}:\hat{ \boldsymbol{\delta }}\hat{\boldsymbol{\delta }} {+\rho }^{\chi }\mathbf{N}\hat{\boldsymbol{\delta }}&\quad \mbox{ for }\ \hat{\boldsymbol{\delta }}: \mathbf{D} > 0\,, \\ {\rho }^{\chi }(m_{R} - m_{T})\mathcal{L}:\hat{ \boldsymbol{\delta }}\hat{\boldsymbol{\delta }} &\quad \mbox{ for }\ \hat{\boldsymbol{\delta }}: \mathbf{D} \leq 0\,, \end{array} \right. \end{array} }$$
(1.131)

where \(\boldsymbol{\delta }\) is the intergranular strain, and m R , m T , χ, and R denote material parameters. The normalized magnitude of \(\boldsymbol{\delta }\) is defined as

$$\displaystyle{ \rho = \frac{\|\boldsymbol{\delta }\|} {R}\,. }$$
(1.132)

Further, the direction of the intergranular strain \(\boldsymbol{\delta }\) is set

$$\displaystyle{ \hat{\boldsymbol{\delta }} = \left \{\begin{array}{ll} \boldsymbol{\delta }/\|\boldsymbol{\delta }\| &\quad \mbox{ for }\ \boldsymbol{\delta }\neq \mathbf{0}\,,\\ \mathbf{0} &\quad \mbox{ for } \ \boldsymbol{\delta } = \mathbf{0}\,. \end{array} \right. }$$
(1.133)

The evolution equation of the intergranular strain tensor \(\boldsymbol{\delta }\) is postulated as

$$\displaystyle{ \mathring{\boldsymbol{\delta }} = \left \{\begin{array}{ll} (\mathcal{I}-\hat{\boldsymbol{\delta }}\hat{{\boldsymbol{\delta }}\rho }^{\beta _{r}}): \mathbf{D}&\quad \mbox{ for }\ \hat{\boldsymbol{\delta }}: \mathbf{D} > 0\,, \\ \mathbf{D} &\quad \mbox{ for }\ \hat{\boldsymbol{\delta }}: \mathbf{D} \leq 0\,, \end{array} \right. }$$
(1.134)

where \(\mathring{\boldsymbol{\delta}}\) is the objective rate of intergranular strain and the exponent β r is a material parameter.

For a monotonic continuation of straining with \(\mathbf{D} \sim \hat{\boldsymbol{\delta }}\), the stiffness is

$$\displaystyle{ \mathcal{M} = \mathcal{L} + \mathbf{N}\hat{\boldsymbol{\delta }}\,. }$$
(1.135)

Note that \(\mathbf{D} =\hat{ \boldsymbol{\delta }}\|\mathbf{D}\|\) and \(\mathbf{N}\hat{\boldsymbol{\delta }}: \mathbf{D} = \mathbf{N}\|\mathbf{D}\|\) in this case. Thus we obtain the basic hypoplastic equation (1.125).

1.1.3 A.3 Material Parameters

The parameters used in all calculations are listed in Tables 1.4 and 1.5.

Table 1.4 Parameters for the basic model
Table 1.5 Parameters for the extended model

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fellin, W., Ostermann, A. (2014). Constitutive Models in Finite Element Codes. In: Hofstetter, G. (eds) Computational Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05933-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05933-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05932-7

  • Online ISBN: 978-3-319-05933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics