Skip to main content

Scheduling Tests in Automotive R&D Projects Using a Genetic Algorithm

  • Chapter
  • First Online:
Handbook on Project Management and Scheduling Vol. 2

Abstract

For each car model an automotive manufacturer has to perform hundreds of tests on prototype vehicles before mass production can be started. In this chapter we present heuristic methods for scheduling the individual tests in automotive R&D projects such that the number of required experimental vehicles and hence the testing costs are minimized. The problem at hand can be interpreted as a multi-mode resource-constrained project scheduling problem with minimum and maximum time lags and cumulative resources. We present forward and backward variants of a priority-rule based method as well as a genetic algorithm based on an activity list representation. The presented methods are examined in a comprehensive computational study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A maximum inventory \(\overline{R}_{v_{k}}:= 1\) cannot be exceeded as each test must have depleted the inventory of the used resource before replenishing it and at most one prototyping activity per resource exists.

  2. 2.

    The test sets are available at the following URL: https://www.wiwi.tu-clausthal.de/testsets-evt/.

  3. 3.

    Nota bene: A deeper analysis of this phenomenon has shown that for smaller sample sizes (e.g., 100 calculated solutions) the priority-rule based method leads to better results than the sampling algorithm.

References

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Ballestín F, Schwindt C, Zimmermann J (2007) Resource leveling in make-to-order production: modeling and heuristic solution method. Int J Oper Res 4(1):1–13

    Google Scholar 

  • Bartels JH (2009) Anwendungen von Methoden der ressourcenbeschränkten Projektplanung mit multiplen Ausführungsmodi in der betriebswirtschaftlichen Praxis. Gabler, Wiesbaden

    Book  Google Scholar 

  • Bartels JH, Zimmermann J (2006a) Optimizing the use of experimental vehicles: solution procedures. In: Proceedings of the 10th international workshop on project management and scheduling, Poznań, pp 68–72

    Google Scholar 

  • Bartels JH, Zimmermann J (2006b) Scheduling tests in automotive R&D projects. In: Haasis HD, Kopfer H, Schönberger J (eds) Operations research proceedings 2005. Springer, Berlin, pp 661–666

    Chapter  Google Scholar 

  • Bartels JH, Zimmermann J (2009) Scheduling tests in automotive R&D projects. Eur J Oper Res 193(3):805–819

    Article  Google Scholar 

  • Chelst K, Sidelko J, Przebienda A, Lockledge J, Mihailidis D (2001) Rightsizing and management of prototype vehicle testing at Ford Motor Company. Interfaces 31:91–107

    Article  Google Scholar 

  • Gather T, Zimmermann J, Bartels JH (2011) Exact methods for the resource levelling problem. J Sch 14(6):557–569

    Article  Google Scholar 

  • Gembrys SN (1998) Ein Modell zur Reduzierung der Variantenvielfalt in Produktionsunternehmen. Ph.D. dissertation, Technical University of Berlin, Berlin

    Google Scholar 

  • Goldberg (1989) Genetic algorithms in search, optimization and machine learning. Kluwer, Boston

    Google Scholar 

  • Hartmann (1998) A competitive genetic algorithm for resource-constrained project scheduling. Nav Res Log 45:733–750

    Google Scholar 

  • Heilmann R (2000) Ressourcenbeschränkte Projektplanung im Mehr-Modus-Fall. Gabler, Wiesbaden

    Book  Google Scholar 

  • Heilmann R (2001) Resource-constrained project scheduling: a heuristic for the multi-mode case. OR Spectr 23:335–357

    Article  Google Scholar 

  • Henseler P (2004) Die Konfigurations- und Verträglichkeitsmatrix als Beitrag für eine differenzierte Betrachtung von Konfigurierungsproblemen. VDI Verlag, Düsseldorf

    Google Scholar 

  • Holland J (1975) Adaption in natural and artificial systems. MIT Press, Ann Arbor

    Google Scholar 

  • Klein R (2000) Scheduling of resource-constrained projects. Kluwer, Boston

    Book  Google Scholar 

  • Kolisch R, Hartmann S (1999) Heuristic algorithms for solving the resource-constrained project scheduling problem: classification and computational analysis. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications, Kluwer, Boston, pp 147–178

    Chapter  Google Scholar 

  • Kolisch R, Schwindt C, Sprecher A (1999) Benchmark instances for project scheduling problems. In: Wȩglarz J (ed) Project scheduling: recent models, algorithms and applications. Kluwer, Boston, pp 197–212

    Chapter  Google Scholar 

  • Limtanyakul K (2008) Scheduling of tests on vehicle prototypes using constraint and integer programming. In: Kalcsics J and Nickel S (eds) Operations research proceedings 2007, Springer, Berlin, pp 421–426

    Chapter  Google Scholar 

  • Limtanyakul K (2009) Scheduling of tests on vehicle prototypes. Ph.D. dissertation, Technical University of Dortmund, Dortmund

    Google Scholar 

  • Limtanyakul K, Schwiegelshohn U (2007) Scheduling tests on vehicle prototypes using constraint programming. In: Proceedings of the 3rd multidisciplinary international scheduling conference: theory and applications, Paris, pp 336–343

    Google Scholar 

  • Limtanyakul K, Schwiegelshohn U (2012) Improvements of constraint programming and hybrid methods for scheduling of tests on vehicle prototypes. Constraints 17(2):172–203

    Article  Google Scholar 

  • Lockledge J, Mihailidis D, Sidelko J, Chelst K (2002) Prototype fleet optimization model. J Oper Res Soc 53:833–841

    Article  Google Scholar 

  • Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin

    Book  Google Scholar 

  • Neumann K, Schwindt C (2002) Project scheduling with inventory constraints. Math Method Oper Res 56:513–533

    Article  Google Scholar 

  • Neumann K, Zimmermann J (2000) Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. Eur J Oper Res 127:425–443

    Article  Google Scholar 

  • Neumann K, Schwindt C, Zimmermann J (2003) Project scheduling with time windows and scarce resources. Springer, Berlin

    Book  Google Scholar 

  • Neumann K, Schwindt C, Zimmermann J (2006) Resource-constrained project scheduling with time windows: recent developments and new applications. In: Jozefowska J, Wȩglarz J (eds) Perspectives in modern project scheduling. Springer, New York, pp 375–407

    Google Scholar 

  • Pohlheim H (1999) Evolutionäre Algorithmen. Springer, Berlin

    Google Scholar 

  • Risse J (2002) Time-to-Market-Management in der Automobilindustrie: ein Gestaltungsrahmen für ein logistikorientiertes Anlaufmanagement. Ph.D. dissertation, Technical University of Berlin, Berlin

    Google Scholar 

  • Roy B (1964) Les problèmes d’ordonnancement. Dunod, Paris

    Google Scholar 

  • Scheffermann R, Clausen U, Preusser A (2005) Test scheduling on vehicle prototypes in the automotive industry. In: Proceedings of 6th Asia-Pacific industrial engineering and management systems (APIEMS), vol 11, pp 1817–1830

    Google Scholar 

  • Schwindt C (1998) Generation of resource-constrained project scheduling problems subject to temporal constraints. Technical Report WIOR 543, University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Selle T, Zimmermann J (2003) A bidirectional heuristic for maximizing the net present value of large-scale projects subject to limited resources. Nav Res Log 50:130–148

    Article  Google Scholar 

  • Valls V, Ballestín F, Barrios A (2006) An evolutionary algorithm for the resource-constrained project scheduling problem subject to temporal constraints. In: Proceedings of the 10th international workshop on project management and scheduling, Poznań, pp 370–376

    Google Scholar 

  • Valls V, Quintanilla S, Ballestín F (2001) Resource-constrained project scheduling: a critical activity reordering heuristic. Eur J Oper Res 149:282–301

    Article  Google Scholar 

  • Zimmermann J (1997) Heuristics for resource levelling problems in project scheduling with minimum and maximum time lags. Technical Report WIOR 491, University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Zimmermann J (2001) Ablauforientiertes Projektmanagement: Modelle, Verfahren und Anwendungen. Gabler, Wiesbaden

    Book  Google Scholar 

  • Zimmermann J, Bartels JH (2006) Optimizing the use of experimental vehicles: problem description and mathematical model. In: Proceedings of the 10th international workshop on project management and scheduling, Poznań, pp 383–387

    Google Scholar 

  • Zimmermann J, Stark C, Rieck J (2010) Projektplanung: Modelle, Methoden, Management. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartels, JH., Zimmermann, J. (2015). Scheduling Tests in Automotive R&D Projects Using a Genetic Algorithm. In: Schwindt, C., Zimmermann, J. (eds) Handbook on Project Management and Scheduling Vol. 2. International Handbooks on Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05915-0_22

Download citation

Publish with us

Policies and ethics