Skip to main content

Chlorophyll Retrieval Using Ground Based Hyperspectral Data from a Tropical Area of India Using Regression Algorithms

  • Chapter
  • First Online:
Remote Sensing Applications in Environmental Research

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 1967 Accesses

Abstract

Newly emerged hyperspectral techniques make it possible to acquire images in narrow and continuous spectral bands, providing significant improvements when compared with broad bands. In this work total chlorophyll, chlorophyll-a and chlorophyll-b were estimated, which have been used to find an empirical relationship with the hyperspectral data. The vegetation indices used in this study are Red Edge Inflection Point (REIP), Normalized Difference Vegetation Index (NDVI), Soil Adjustment Vegetation Index (SAVI) and Structure Insensitive Pigment Index (SIPI). These indices were calculated on the first derivative of reflectance obtained from the field. The REIP value was calculated using a four point interpolation technique. The REIP value for fertilizer plots was found higher than for control, indicating a better health of crop in the fertilizer plots. Stepwise regression analysis was employed to estimate the linear regression algorithm for chlorophyll retrieval. The analysis shows that REIP and NDVI served as best predictor for total chlorophyll and chlorophyll-b estimation, while REIP was found suitable for Chlorophyll-a estimation. A global sensitivity analysis method was developed to estimate the uncertainty associated with the proposed chlorophyll retrieval algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiol 24(1):1–15

    Google Scholar 

  • Baret F, Champion I, Guyot G, Podaire A (1987) Monitoring wheat canopies with a high spectral resolution radiometer. Remote Sens Environ 22(3):367–378

    Article  Google Scholar 

  • Becker F, Choudhury BJ (1988) Relative sensitivity of normalized vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sens Environ 24(2):297–311

    Article  Google Scholar 

  • Behrens T, Muller J, Diepenbrock W (2006) Utilization of canopy reflectance to predict properties of oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.) during ontogenesis. Eur J Agron 25(4):345–355

    Article  Google Scholar 

  • Blackburn GA (1998) Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int J Remote Sens 19(4):657–675

    Article  Google Scholar 

  • Broge NH, Mortensen JV (2002) Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ 81(1):45–57

    Article  Google Scholar 

  • Carter GA (1998) Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sens of Environ 63(1):61–72

    Google Scholar 

  • Carter GA, Knapp AK (2001) Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot 88(4):677–684

    Article  Google Scholar 

  • Cho MA, Skidmore AK (2006) A new technique for extracting the red edge position from hyperspectral data: the linear interpolation method. Remote Sens Environ 101(2):181–193

    Article  Google Scholar 

  • Clevers JGPW (1999) The use of imaging spectrometry for agricultural applications. ISPRS J Photogrammetry Remote Sens 54(5):299–304

    Article  Google Scholar 

  • Clevers JGPW, De Jong SM, Epema GF, Van Der Meer FD, Bakker WH, Skidmore AK, Scholte KH (2002) Derivation of the red edge index using the MERIS standard band setting. Int J Remote Sens 23(16):3169–3184

    Article  Google Scholar 

  • Dawson TP, Curran PJ (1998) A new technique for interpolating the reflectance red edge position. Int J Remote Sens 19(11):2133–2139

    Article  Google Scholar 

  • Delegido J, Alonso L, Gonzalez G, Moreno J (2010) Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int J Appl Earth Obs Geoinf 12:165–174

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Filella I, Penuelas J (1994) The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int J Remote Sens 15(7):1459–1470

    Article  Google Scholar 

  • Flexas J, Briantais JM, Cerovic Z, Medrano H, Moya I (2000) Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sens Environ 73(3):283–297

    Google Scholar 

  • Graeff S, Claupein W (2003) Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur J Agron 19(4):611–618

    Article  Google Scholar 

  • Gupta M, Srivastava PK (2009) Measuring winter wheat cultivar (Triticum aestivum L.) health status using hyperspectral reflectance data. In: Proceedings of ISPRS archives XXXVIII-8/W3 workshop : impact of climate change on agriculture, 17–18 Dec 2009

    Google Scholar 

  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modelling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352

    Article  Google Scholar 

  • Hansen PM, Schjoerring JK (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86(4):542–553

    Article  Google Scholar 

  • Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25(3):53–70

    Article  Google Scholar 

  • Jongschaap REE, Booij R (2004) Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. Int J Earth Obs Geoinf 5(3):204–218

    Google Scholar 

  • Kokaly RF (2001) Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens Environ 75(2):153–161

    Article  Google Scholar 

  • Kumar L, Schmidt KS, Dury S, Skidmore AK (2001) Imaging spectrometry and vegetation science. In: van de Meer F, de Jong SM (eds) Imaging spectrometry. Kluwer Academic Press, Dordrecht, pp 111–155

    Google Scholar 

  • Larsolle A, Muhammed HH (2007) Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precis Agric 8:37–47

    Article  Google Scholar 

  • Miao Y, Mulla DJ, Randall GW, Vetsch JA, Vintila R (2009) Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precis Agric 10:45–62

    Article  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174

    Article  Google Scholar 

  • Mutanga O, Skidmore AK (2007) Red edge shift and biochemical content in grass canopies. ISPRS J Photogrammetry Remote Sens 62:34–42

    Article  Google Scholar 

  • Natrella M (2010) NIST/SEMATECH e-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/

  • Penuelas J, Baret F, Filella I (1995) Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31(2):221–230

    Google Scholar 

  • Pu R, Gong P, Biging G, Larrieu MR (2003) Extraction of red edge optical parameters from hyperion data for estimation of forest leaf area index. IEEE Trans Geosci Remote Sens 41(4):916–921

    Article  Google Scholar 

  • Ruiz-Espinoza FH, Murillo-Amador B, Garcia-Hernandez JL, Fenech-Larios L, Rueda-Puente EO, Troyo-Dieguez E, Kaya C, Beltran-Morales A (2010) Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (spad-502) readings. J Plant Nutr 33:423–438

    Article  Google Scholar 

  • Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schuler G (2010) Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Obs Geoinf 12:17–26

    Article  Google Scholar 

  • Thenkabail PS, Smith RB, De Pauw E (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ 71(2):158–182

    Article  Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS, Legg C, De Dieu MJ (2004a) Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens Environ 90:23–24

    Article  Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS, Van Der Meer B (2004b) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens Environ 91:354–376

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Vane G, Goetz AFH (1988) Terrestrial imaging spectroscopy. Remote Sens Environ 24(1):1–29

    Article  Google Scholar 

  • Vincini M, Frazzi E, D’Alessio P (2008) A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis Agric 9:303–319

    Article  Google Scholar 

  • Wu C, Niu Z, Tang Q, Huang W (2008) Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agric For Meteorol 148(8–9):1230–1241

    Article  Google Scholar 

  • Wu C, Han X, Niu Z, Dong J (2010) An evaluation of EO-1 hyperspectral hyperion data for chlorophyll content and leaf area index estimation. Int J Remote Sens 31(4):1079–1086

    Article  Google Scholar 

  • Xue L, Yang L (2009) Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J Photogrammetry Remote Sens 64:97–106

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for growth stages of cereals. Weed Res 14(6):415–421

    Article  Google Scholar 

Download references

Acknowledgment

Authors are highly thankful to the University Grant Commission (UGC), India for providing financial support. Authors are also greatful to Space Application Centre, Indian Space Research Organization, Ahmedabad, India for providing technical support and information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, M., Srivastava, P.K., Mukherjee, S., Sandhya Kiran, G. (2014). Chlorophyll Retrieval Using Ground Based Hyperspectral Data from a Tropical Area of India Using Regression Algorithms. In: Srivastava, P., Mukherjee, S., Gupta, M., Islam, T. (eds) Remote Sensing Applications in Environmental Research. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-05906-8_10

Download citation

Publish with us

Policies and ethics