Skip to main content

Tribological Systems

  • Chapter
  • First Online:
Friction and Wear

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 3241 Accesses

Abstract

In this chapter, the main features of a number of important tribological systems will be presented. Systems from mechanical design are considered together with tribological systems involved in manufacturing processes. A brief description of the relevant design will be provided along with the analysis of the tribological damage. Materials and surface treatments currently used for each application will be also outlined. The overall goal is to provide basic tools for a preliminary design and control of the tribological system under consideration using the information provided in the previous chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Collins, H. Busby, G. Staab, Mechanical Design of Machine Elements, A Failure Prevention Perspective, 2nd edn. (Wiley, New York, 2010)

    Google Scholar 

  2. S.C. Tung, M.L. McMillan, Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 37, 517–536 (2004)

    Article  Google Scholar 

  3. K.H. Czichos, K.H. Habig, Tribologie Handbuch (Vieweg, Reibung und Verlschleiss, 1992)

    Book  Google Scholar 

  4. M. Priest, C.M. Taylor, Automobile engine tribology—approaching the surface. Wear 241, 193–203 (2000)

    Article  Google Scholar 

  5. G. Dalmaz, A.A. Lubrecht, D. Dowson, M. Priest (eds.), Tribology Research: from Model Experiment to Industrial Problem (Elsevier, New York, 2001)

    Google Scholar 

  6. M.M. Khonsari, E.R. Booser, Applied Tribology, Bearing Design and Lubrication (Wiley, New York, 2008)

    Google Scholar 

  7. I.M. Hutchings, Tribology (Edwald Arnold, London, 1992)

    Google Scholar 

  8. G. Straffelini, A. Molinari, P. Detassis, P. Groff, Wear behaviour of surface treated steel bearings for rocker arms in direct injection systems, Proceeding of Materials Solutions ’97 on Wear of Engineering Materials (ASM, 1997), pp. 85–90

    Google Scholar 

  9. A. Neville, A. Morina, T. Haque, M. Voong, Compatibility between tribological surfaces and lubricant additives—How friction and wear reduction can be controlled by surface/lube synergies. Tribol. Int. 40, 1680–1695 (2007)

    Article  Google Scholar 

  10. M.B. Peterson, W.O. Winer (eds.), Wear Control Handbook (ASME, New York, 1980)

    Google Scholar 

  11. C.M. Taylor, Automobile engine tribology—design considerations for efficiency and durability. Wear 221, 1–8 (1998)

    Article  Google Scholar 

  12. J. Williams, Engineering Tribology (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  13. SKF, I cuscinetti volventi, Catalogo generale (1989)

    Google Scholar 

  14. K. Holmberg and A. Matthews, Coatings Tribology (Elsevier, New York, 1994)

    Google Scholar 

  15. M. Widmarka, A. Melander, Effect of material, Heat treatment, grinding and shot peening on contact fatigue life of carburized steels. Int. J. Fatigue 21, 309–327 (1999)

    Article  Google Scholar 

  16. A.C. Batista, A.M. Dias, J.L. Lebrun, J.C. LeFlour, G. Inglebert, Contact fatigue of automotive gears: evolution and effects of residual stresses introduced by surface treatments. Fatigue Fract. Eng. Mater. Struct. 23, 217–228 (2000)

    Article  Google Scholar 

  17. D. Frölich, B. Magyar, B. Sauer, A comprehensive model of wear, friction and contact temperature in radial shaft seals. Wear 311, 71–80 (2004)

    Article  Google Scholar 

  18. Q.F. Wen, Y. Liu, W.F. Huang, S.F. Suo, Y.M. Wang, The effect of surface roughness on thermal-elasto-hydrodynamic model of contact mechanical seals. Sci. China 56, 1920–1929 (2013)

    Article  Google Scholar 

  19. J. Wahlstrom, A study of airborne wear particles from automotive disc brakes, Doctoral thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2011

    Google Scholar 

  20. U. Olofsson, Y. Zhu, S. Abbasi, R. Lewis, S. Lewis, Tribology of the wheel-rail contact—aspects of wear, particle emission and adhesion. Veh. Syst. Dyn. 51, 1091–1120 (2013)

    Article  Google Scholar 

  21. T. Lewis, U. Olofsson, Wheel-Rail Interface Handbook (Woodhead Publishing Limited, London, 2009)

    Google Scholar 

  22. K.D. Vo, H.T. Zhu, A.K. Tieu, P.B. Kosasih, FE method to predict damage formation on curved track for various worn status of wheel/rail profiles. Wear 322, 61–75 (2015)

    Article  Google Scholar 

  23. A. Ekberg, B. Akesson, E. Kabo, Wheel/rail rolling contact fatigue—probe, predict, prevent. Wear 314, 2–12 (2014)

    Article  Google Scholar 

  24. A. Ghidini, M. Diener, A. Gianni, J. Schneider, Superlos, Innovative steel by Lucchini RS for high-speed wheel application (Lucchini RS, Lovere, 2012)

    Google Scholar 

  25. S. Kalpakjian, Manufacturing Processes for Engineering Materials (Addison-Wesley, Essex, 1984)

    Google Scholar 

  26. M.C. Shaw, Metal Cutting Principles (Clarendon Press, Oxford, 1989)

    Google Scholar 

  27. M. P. Groover, Fundamentals of Modern Manufacturing (Prentice-Hall, Englewood Cliffs, 1996)

    Google Scholar 

  28. L.J. Yang, Determination of the wear coefficient of tunngsten carbide by a turning operation. Wear 250, 366–375 (2001)

    Article  Google Scholar 

  29. W. Grzesik, J. Rech, K. Zak, Determination of friction in metal cutting with tool wear and flank face effects. Wear 317, 8–16 (2014)

    Article  Google Scholar 

  30. T.H.C. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal machining, Theory and Applications (Arnold, London, 2000)

    Google Scholar 

  31. Z. Palmai, Proposal for a new theoretical model of the cutting tool’s flank wear. Wear 303, 437–445 (2013)

    Article  Google Scholar 

  32. A. Inspektor, P.A. Salvador, Architecture of PVD coatings for metalcutting applications: a review. Surf. Coat. Technol. 257, 138–153 (2014)

    Article  Google Scholar 

  33. M.J. Jackson, C.J. Davis, M.P. Hitchiner, B. Mills, High-speed grinding with CBN grinding wheels-applications and future technology. J. Mater. Process. Technol. 110, 78–88 (2001)

    Article  Google Scholar 

  34. J. Kopac, P. Krajnik, High-performance grinding-A review. J. Mater. Process. Technol. 175, 278–284 (2006)

    Article  Google Scholar 

  35. U.S.P. Durgumahanti, V. Singh, P. Venkateswara Rao, A new model for grinding force prediction and analysis. Int. J. Mach. Tools Manuf. 50, 231–240 (2010)

    Article  Google Scholar 

  36. G. Werner, Influence of work material on grinding forces. Ann. CIRP 27, 243–248 (1978)

    Google Scholar 

  37. S. Jahanmir, M. Ramulu, P. Koshu (eds.), Machining of Ceramics and Composites (Marcel, New York, 1999)

    Google Scholar 

  38. C. Chen, Y. Wang, H. Ou, Y. He, X. Tang, A review on remanufacture of dies and moulds. J. Cleaner Prod. 64, 13–23 (2014)

    Article  Google Scholar 

  39. S.Q. Wang, M.X. Wei, F. Wang, H.H. Cui, C. Dong, Transition of mild wear to severe wear in oxidative wear of H21 steels. Tribol. Lett. 32, 67–72 (2008)

    Article  Google Scholar 

  40. E. Doege, G. Andreis, M. Guld, Improving tool life in hot massive forming by coating, in Proceeding of 5th International Conferente on Tooling, University of Leoben, 335–348, 1999

    Google Scholar 

  41. ASM Handbook, Friction, Lubrication and Wear Technology 18 (ASM, 1992)

    Google Scholar 

  42. M. Pellizzari, A. Molinari, G. Straffelini, Tribological behaviour of hot rolling rolls. Wear 259, 1281–1289 (2005)

    Article  Google Scholar 

  43. W.L. Roberts, Hot Rolling of Steel (Marcel, New York, 1983)

    Google Scholar 

  44. J.G. Lenard, Metal Forming Science and Practice. Elsevier, New York (1983)

    Google Scholar 

  45. J.G. Lenard, L. Barbulovic-Nad, The coefficient of friction during hot rolling of low carbon steel strips. J. Tribol. 124, 840–845 (2002)

    Article  Google Scholar 

  46. J.H. Beynon, Tribology of hot metal forming. Tribol. Int. 31, 73–77 (1998)

    Article  Google Scholar 

  47. P. Montmitonnet, F. Delamare, B. Rizoulieres, Transfer layer and friction in cold metal strip rolling parameters. Wear 245, 125–135 (2000)

    Article  Google Scholar 

  48. G.E. Dieter, Mechanical Metallurgy (McGraw Hill, New York, 1988)

    Google Scholar 

  49. M. Hashimoto, Development of multi-component white cast iron rolls and rolling technology in steel rolling, Proceedings of ABRASION 2008, University of Trento, 2008 pp. 1–23, ed. by M. Pellizzari

    Google Scholar 

  50. R.N. Wright, Wire Technology—Process Engineering and Metallurgy (Butterworth-Heinemann, Oxford, 2011)

    Google Scholar 

  51. P. Gillstrom, M. Jarl, Wear of die after drawing of pickled or reverse bent wire rod. Wear 262, 858–867 (2007)

    Article  Google Scholar 

  52. T. Björk, J. Bergstrom, S. Hogmark, Tribological simulation of aluminium hot extrusion. Wear 224, 216–225 (1999)

    Article  Google Scholar 

  53. Y. Birol, Analysis of wear of gas nitrided H13 tool steel die in aluminium extrusion. Eng. Fail. Anal. 26, 203–210 (2012)

    Article  Google Scholar 

  54. T. Björk, R. Westergard, S. Hogmark, Wear of surface treated dies for aluminium extrusion—a case study. Wear 249, 316–323 (2001)

    Article  Google Scholar 

  55. M. Pellizzari, M. Zadra, A. Molinari, Tribological properties of surface engineered hot work tool steel for aluminium extrusion dies, Surf. Eng. 23, 165–168 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Straffelini .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Straffelini, G. (2015). Tribological Systems. In: Friction and Wear. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05894-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05894-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05893-1

  • Online ISBN: 978-3-319-05894-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics