Skip to main content

Wear Processes

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

In the study of the wear failures, it is usual to consider the wear processes defined with reference to the type and geometry of relative motion between two mating surfaces (Fig. 4.1). In general, each wear process is due to one (or more) wear mechanisms . Table 5.1 lists some examples of tribological systems with the main wear mechanism. In the next paragraphs, the characteristics of the main wear processes will be outlined, including the methods to control them. The role of materials will be also indicated, although more detailed information on the materials’ selection and surface engineering in tribology will be given in the next two chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.H. Czichos, K.H. Habig, Tribologie Handbook (Reibung und Verlschleiss, Vieweg, 1992)

    Book  Google Scholar 

  2. P.J. Blau, Friction and Wear Transitions of Materials (Noyes Publications, Park Ridge, 1989)

    Google Scholar 

  3. G. Straffelini, A. Molinari, Mild sliding wear of Fe-0.2 % C, Ti-6%Al-4%V and Al-7072: A comparative study. Tribol. Lett. 41, 227–238 (2011)

    Article  Google Scholar 

  4. S. Wilson, A.T. Alpas, Thermal effects on mild wear transitions in dry sliding of an aluminium alloy. Wear 225–229, 440–449 (1999)

    Article  Google Scholar 

  5. G. Straffelini, D. Trabucco, A. Molinari, Sliding wear of austenitic and austenitic-ferritic stainless steels. Metall. Mater. Trans. 33A, 613–624 (2002)

    Article  Google Scholar 

  6. A.F. Smith, The influence of surface oxidation and sliding speed on the unlubricated wear of 316 stainless-steel at low load. Wear 105, 91–107 (1985)

    Article  Google Scholar 

  7. S.C. Lim, M.F. Ashby, Wear-mechanism maps. Acta Metall. Mater. 35, 1–24 (1987)

    Article  Google Scholar 

  8. R.N. Rao, S. Das, D.P. Mondal, G. Dixit, S.L. Tulasi DEVI, Dry sliding wear maps for AA7071 (Al-Zn-Mg-Cu) aluminium matrix composite. Tribol. Int. 60, 77–82 (2013)

    Article  Google Scholar 

  9. J. Zhang, A.T. Alpas, Transitions between mild and severe wear in aluminum alloys. Acta Mater. 45, 513–528 (1997)

    Article  Google Scholar 

  10. M.M. Khonsari, E.R. Booser, Applied Tribology—Bearing Design and Lubrication, 2nd edn. (Wiley, New York, 2008)

    Google Scholar 

  11. A. Sethuramiah, Lubricated Wear, Science and Technology (Elsevier, New York, 2003)

    Google Scholar 

  12. S.E. Franklin, J.A. Dijkman, The implementation of tribological principles in an expert system (precept) for the selection of metallic materials, surface treatments and coatings in engineering design. Wear 181–183, 1–10 (1995)

    Google Scholar 

  13. J.E, D.T. Gawne, Surface failure mechanisms of Ni-Cr-Mo steel under lubricated sliding. Wear 213, 123–130 (1997)

    Google Scholar 

  14. O. Soderberg, D. Vingsbo, On fretting maps. Wear 126, 131–147 (1988)

    Article  Google Scholar 

  15. S. Fouvry, Ph. Kapsa, L. VINCENT, Quantification of fretting damage. Wear 200, 186–205 (1996)

    Google Scholar 

  16. B. Bushan (ed.), Modern Tribology Handbook, Vol. 1. (CRC Press, Boca Raton, 2001)

    Google Scholar 

  17. S.E. Kinyon, D.W. Hoepper, Y. Mutoh (eds.), Fretting Fatigue Advances in Basic Understanding and Applications, STP1425. (ASTM International, West Conshohocken, 2003)

    Google Scholar 

  18. K. Endo, Practical observations of initiation and propagation of fretting fatigue cracks, in ed. by R.B. Waterhouse. Fretting Fatigue, (Applied Science Publisher, 1981), pp. 127–141

    Google Scholar 

  19. R.B. Waterhouse, Fretting fatigue. Int. Mater. Rev. 37, 77–97 (1992)

    Article  Google Scholar 

  20. M.B. Peterson, W.O. Winer (eds.), Wear Control Handbook (ASME, Fairfield, 1980)

    Google Scholar 

  21. H.K.D.H. Bhadeshia, Steels for bearings. Prog. Mater. Sci. 57, 268–435 (2012)

    Article  Google Scholar 

  22. N.A. Fleck, K.J. Kang, M.F. Ashby, The cyclic properties of engineering materials. Acta Metall. Mater. 42, 365–381 (1994)

    Article  Google Scholar 

  23. R.G. Bayer, Wear Analysis for Engineers, (HNB Publishing, New York, 2002)

    Google Scholar 

  24. Y. Kadin, A.V. Rychahivskyy, Modeling of surface cracks in rolling contact. Mater. Sci. Eng. A 541, 143–151 (2012)

    Article  Google Scholar 

  25. G. Donzella, C. Petrogalli, A failure assessment diagram for components subjected to rolling contact loading. Int. J. Fatigue 32, 256–268 (2010)

    Article  Google Scholar 

  26. G. Niemann, H. Winter, Maschinen-Elemente, Band II, (Springer, Berlin, 1986)

    Google Scholar 

  27. P. Clayton, Tribological aspects of wheel-rail contact: a review of recent experimental research. Wear 191, 170–183 (1996)

    Article  Google Scholar 

  28. J. Braendlein, P. Eschmann, L. Hasbargen, K. Weigand, Ball and Roller Bearings, Theory, Design and Application, 3rd Edn. (Wiley, New York, 1999)

    Google Scholar 

  29. G. Hoffman, K. Lipp, K. Michaelis, C.M. Sonsino, J.A. Rice, Testing P/M materials for high loading gear applications. Int. J. Powder Metall. 35, 35–44 (1999)

    Google Scholar 

  30. Y. Wang, J.E. Fernandez, D.G. Cuervo, Rolling-contact fatigue lives of steel AISI 52100 balls with eight mineral and synthetic lubricants. Wear 196, 110–119 (1996)

    Article  Google Scholar 

  31. M. Woldman, E. Van Der Heide, D.J. Schipper, T. Tinga, M.A. Masen, Investigating the influence of sand particle properties on abrasive wear behaviour. Wear 294–295, 419–426 (2012)

    Google Scholar 

  32. I. Iwasaki, R.L. Pozzo, K.A. Natarajan, K. Adam, J.N. Orlich, Nature of corrosive and abrasive wear in ball mill grinding. Int. J. Miner. Process. 22, 345–360 (1988)

    Article  Google Scholar 

  33. C. Aldrich, Consumption of steel grinding media in mills—a review. Miner. Eng. 46, 77–91 (2013)

    Article  Google Scholar 

  34. M.J. Neale, M. Gee, Guide to Wear Problems and Testing for Industry, (Professional Engineering Publishing, London, 2000)

    Google Scholar 

  35. K.H. Zum Gahr, Microstructure and Wear of Materials, (Elsevier, New York, 1987)

    Google Scholar 

  36. J.A. Hawk, J.H. Tylczak, R.D. Wilson, An assessment of the abrasive wear behavior of ferrous alloys and composites using small scale laboratory wear tests, in Proceedings from Materials Solutions ‘97 on Wear of Engineering Materials, ASM (1997)

    Google Scholar 

  37. C.P. Dogan, J.A. Hawk, Role of composition and microstructure in the abrasive wear of high-alumina ceramics. Wear 225–229, 1050–1058 (1999)

    Article  Google Scholar 

  38. A.Y. Mosbah, D. Wexler, A. Calka, Abrasive wear of WC-FeAl composites. Wear 258, 1337–1341 (2005)

    Article  Google Scholar 

  39. I.M. Hutchings, Tribology, (Edwald Arnold, London, 1992)

    Google Scholar 

  40. R. Kaundal, Role of process variables on the solid particle Erosion of polymeric composites: a critical review. Silicon 5, 5–20 (2014)

    Article  Google Scholar 

  41. E. Huttunen-Saarivita, H. Kinnune, J. Tuiremo, M. Uusitalo, M. Antonov, Erosive wear of boiler steels by sand and ash. Wear 317, 213–224 (2014)

    Article  Google Scholar 

  42. G. Sundararajan, M. Roy, Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribol. Int. 30, 339–359 (1997)

    Google Scholar 

  43. W. Tabakoff, V. Shanov, Protection of coated superalloys from erosion exposed to particulate flows, in Proceedings from Materials Solutions ’97 on Wear of Engineering Materials, ASM (1997)

    Google Scholar 

  44. S. Hattori, M. Kakuichi, Effect of impact angle on liquid droplet impingement erosion. Wear 298–299, 1–7 (2013)

    Article  Google Scholar 

  45. M. Dular, B. Stoffel, B. Sirok, Development of a erosion model. Wear 261, 642–655 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Straffelini .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Straffelini, G. (2015). Wear Processes. In: Friction and Wear. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05894-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05894-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05893-1

  • Online ISBN: 978-3-319-05894-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics