Skip to main content

Blood, Sphingosine-1-Phosphate and Lymphocyte Migration Dynamics in the Spleen

  • Chapter
  • First Online:
Sphingosine-1-Phosphate Signaling in Immunology and Infectious Diseases

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 378))

Abstract

The spleen, the largest secondary lymphoid organ, has long been known to play important roles in immunity against blood-borne invaders. Yet how cells migrate within the spleen to ensure fast and effective responses is only now coming to light. Chemokines and oxysterols guide lymphocytes from sites of release at terminal arterioles into the lymphocyte-rich white pulp. Sphingosine-1-phosphate (S1P) and S1P-receptor-1 (S1PR1) promote lymphocyte egress from white to red pulp and back to circulation. Intravital two-photon microscopy has shown that marginal zone (MZ) B cells that are enriched between white and red pulps undergo continual oscillatory migration between the MZ and follicles, ferrying antigens. Cycles of G-protein-coupled receptor kinase-2 (GRK2) mediated S1PR1 desensitization and resensitization underlie this remarkable behavior. The findings discussed in this review have implications for understanding how splenic antibody and T-cell responses are mounted, how the immunosuppressant drug FTY720 (fingolimod) affects the spleen, and how cell shuttling behaviors contribute to immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CD, Okada T, Tang HL, Cyster JG (2007) Imaging of germinal center selection events during affinity maturation. Science 315:528–531

    CAS  PubMed  Google Scholar 

  • Allende ML, Tuymetova G, Lee BG, Bonifacino E, Wu YP, Proia RL (2010) S1P1 receptor directs the release of immature B cells from bone marrow into blood. J Exp Med 207:1113–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alon R, Feigelson SW (2009) Chemokine signaling to lymphocyte integrins under shear flow. Microcirculation 16:3–16

    CAS  PubMed  Google Scholar 

  • Aoshi T, Zinselmeyer BH, Konjufca V, Lynch JN, Zhang X, Koide Y, Miller MJ (2008) Bacterial entry to the splenic white pulp initiates antigen presentation to CD8 + T cells. Immunity 29:476–486

    CAS  PubMed  Google Scholar 

  • Arnon TI, Horton RM, Grigorova IL, and Cyster JG (2013) Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493:684–688

    Google Scholar 

  • Arnon TI, Xu Y, Lo C, Pham T, An J, Coughlin S, Dorn GW, Cyster JG (2011) GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333:1898–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bajenoff M, Glaichenhaus N, Germain RN (2008) Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J Immunol 181:3947–3954

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bankovich AJ, Shiow LR, Cyster JG (2010) CD69 suppresses sphingosine-1-phosophate receptor-1 function through interaction with membrane helix 4. J Biol Chem 285:22328–22337

    Google Scholar 

  • Barral P, Sanchez-Nino MD, van Rooijen N, Cerundolo V, Batista FD (2012) The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J 31:2378–2390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basu S, Ray A, Dittel BN (2011) Cannabinoid receptor 2 is critical for the homing and retention of marginal zone B lineage cells and for efficient T-independent immune responses. J Immunol 187:5720–5732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boscacci RT, Pfeiffer F, Gollmer K, Sevilla AI, Martin AM, Soriano SF, Natale D, Henrickson S, von Andrian UH, Fukui Y, Mellado M, Deutsch U, Engelhardt B, Stein JV (2010) Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing. Blood 116:915–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breart B, Ramos-Perez WD, Mendoza A, Salous AK, Gobert M, Huang Y, Adams RH, Lafaille JJ, Escalante-Alcalde D, Morris AJ, Schwab SR (2011) Lipid phosphate phosphatase 3 enables efficient thymic egress. J Exp Med 208:1267–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown MJ, Nijhara R, Hallam JA, Gignac M, Yamada KM, Erlandsen SL, Delon J, Kruhlak M, Shaw S (2003) Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 102:3890–3899

    CAS  PubMed  Google Scholar 

  • Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL (2010) Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem 285:7805–7817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cahalan MD, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26:585–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cambier JC, Lehmann KR (1989) Ia-mediated signal transduction leads to proliferation of primed B lymphocytes. J Exp Med 170:877–886

    CAS  PubMed  Google Scholar 

  • Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlback B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 108:9613–9618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chun J, Brinkmann V (2011) A mechanistically novel, first oral therapy for multiple sclerosis: the development of fingolimod (FTY720, Gilenya). Discov Med 12:213–228

    PubMed Central  PubMed  Google Scholar 

  • Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C, Lu T, Proia RL, Cyster JG (2004) Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 5:713–720

    CAS  PubMed  Google Scholar 

  • Cinamon G, Zachariah M, Lam O, Cyster JG (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9:54–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159

    CAS  PubMed  Google Scholar 

  • Cyster JG, Goodnow CC (1995) Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J Exp Med 182:581–586

    CAS  PubMed  Google Scholar 

  • Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    CAS  PubMed  Google Scholar 

  • de Paz JL, Moseman EA, Noti C, Polito L, von Andrian UH, Seeberger PH (2007) Profiling heparin-chemokine interactions using synthetic tools. ACS Chem Biol 2:735–744

    PubMed Central  PubMed  Google Scholar 

  • Diaz GA (2005) CXCR4 mutations in WHIM syndrome: a misguided immune system? Immunol Rev 203:235–243

    CAS  PubMed  Google Scholar 

  • Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11:276–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferguson AR, Youd ME, Corley RB (2004) Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells. Int Immunol 16:1411–1422

    CAS  PubMed  Google Scholar 

  • Ford WL (1969) The kinetics of lymphocyte recirculation within the rat spleen. Cell Tissue Kinet 2:171–191

    CAS  Google Scholar 

  • Förster R, Emrich T, Kremmer E, Lipp M (1994) Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84:830–840

    PubMed  Google Scholar 

  • Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    CAS  PubMed  Google Scholar 

  • Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122:1416–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaengel K, Niaudet C, Hagikura K, Siemsen BL, Muhl L, Hofmann JJ, Ebarasi L, Nystrom S, Rymo S, Chen LL, Pang MF, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellstrom M, Fuxe J, Uhlen P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599

    CAS  PubMed  Google Scholar 

  • Gatto D, Wood K, Brink R (2011) EBI2 operates independently of but in cooperation with CXCR5 and CCR7 to direct B cell migration and organization in follicles and the germinal center. J Immunol 187:4621–4628

    CAS  PubMed  Google Scholar 

  • Gonzalez-Cabrera PJ, Hla T, Rosen H (2007) Mapping pathways downstream of sphingosine 1-phosphate subtype 1 by differential chemical perturbation and proteomics. J Biol Chem 282:7254–7264

    CAS  PubMed  Google Scholar 

  • Gowans JL, Knight EJ (1964) The route of re-circulation of lymphocytes in the rat. Proc Royal Soc Lon Biol 159:257–282

    CAS  Google Scholar 

  • Gray D, Kumararatne DS, Lortan J, Khan M, MacLennan IC (1984) Relation of intra-splenic migration of marginal zone B cells to antigen localization on follicular dendritic cells. Immunology 52:659–669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grayson MH, Hotchkiss RS, Karl IE, Holtzman MJ, Chaplin DD (2003) Intravital microscopy comparing T lymphocyte trafficking to the spleen and the mesenteric lymph node. Am J Physiol Heart Circ Physiol 284:H2213–2226

    CAS  PubMed  Google Scholar 

  • Grigorova IL, Panteleev M, Cyster JG (2010) Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc Natl Acad Sci USA 107:20447–20452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigorova IL, Schwab SR, Phan TG, Pham TH, Okada T, Cyster JG (2009) Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat Immunol 10:58–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guinamard R, Okigaki M, Schlessinger J, Ravetch JV (2000) Absence of marginal zone B cells in Pyk-2 deficient mice define their role in the humoral response. Nat Immunol 1:31–36

    CAS  PubMed  Google Scholar 

  • Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, Noel S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, Chen YA, Schultz PG, Cho CY, Seuwen K, Cyster JG, Sailer AW (2011) Oxysterols direct immune cell migration via EBI2. Nature 475:524–527

    CAS  PubMed  Google Scholar 

  • Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G, Zou YR, Littman DR, Cyster JG (2001) A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 194:45–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hauser AE, Shlomchik MJ, Haberman AM (2007) In vivo imaging studies shed light on germinal-centre development. Nat Rev Immunol 7:499–504

    CAS  PubMed  Google Scholar 

  • Ito K, Anada Y, Tani M, Ikeda M, Sano T, Kihara A, Igarashi Y (2007) Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem Biophys Res Commun 357:212–217

    CAS  PubMed  Google Scholar 

  • Jacob J, Kassir R, Kelsoe G (1991) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med 173:1165–1175

    CAS  PubMed  Google Scholar 

  • Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML, Proia RL, Cyster JG (2006) Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J Exp Med 203:2683–2690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly LM, Pereira JP, Yi T, Xu Y, Cyster JG (2011) EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol 187:3026–3032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khanna KM, McNamara JT, Lefrancois L (2007) In situ imaging of the endogenous CD8 T cell response to infection. Science 318:116–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knisely MH (1936) Spleen studies. I. Microscopic observations of the circulatory system of living unstimulated mammalian spleens. Anat Rec 65:23–50

    Google Scholar 

  • Kraal G, Mebius R (2006) New insights into the cell biology of the marginal zone of the spleen. Int Rev Cytol 250:175–215

    CAS  PubMed  Google Scholar 

  • Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55

    PubMed  Google Scholar 

  • Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2010) Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 107:1364–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8:1255–1265

    CAS  PubMed  Google Scholar 

  • Liu C, Yang XV, Wu J, Kuei C, Mani NS, Zhang L, Yu J, Sutton SW, Qin N, Banie H, Karlsson L, Sun S, Lovenberg TW (2011) Oxysterols direct B-cell migration through EBI2. Nature 475:519–523

    CAS  PubMed  Google Scholar 

  • Liu CH, Thangada S, Lee MJ, Van Brocklyn JR, Spiegel S, Hla T (1999) Ligand-induced trafficking of the sphingosine-1-phosphate receptor EDG-1. Mol Biol Cell 10:1179–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo CG, Lu TT, Cyster JG (2003) Integrin-dependence of lymphocyte entry into the splenic white pulp. J Exp Med 197:353–361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo CG, Xu Y, Proia RL, Cyster JG (2005) Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med 201:291–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu TT, Cyster JG (2002) Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297:409–412

    CAS  PubMed  Google Scholar 

  • Luo ZJ, Tanaka T, Kimura F, Miyasaka M (1999) Analysis of the mode of action of a novel immunosuppressant FTY720 in mice. Immunopharmacology 41:199–207

    CAS  PubMed  Google Scholar 

  • MacDonald IC, Ragan DM, Schmidt EE, Groom AC (1987) Kinetics of red blood cell passage through interendothelial slits into venous sinuses in rat spleen, analyzed by in vivo microscopy. Microvasc Res 33:118–134

    CAS  PubMed  Google Scholar 

  • MacLennan ICM, Gray D, Kumararatne DS, Bazin H (1982) The lymphocytes of splenic marginal zones: a distinct B-cell lineage. Immunol Today 3:305–307

    Google Scholar 

  • Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei GJ, Card D, Keohane C, Rosenbach M, Hale J, Lynch CL, Rupprecht K, Parsons W, Rosen H (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    CAS  PubMed  Google Scholar 

  • Manevich-son E, Grabovsky V, Feigelson SW, Cinamon G, Gore Y, Goverse G, Monkley SJ, Margalit R, Melamed D, Mebius RE, Critchley DR, Shachar I, Alon R (2010) Talin1 is required for integrin-dependent B lymphocyte homing to lymph nodes and the bone marrow but not for follicular B-cell maturation in the spleen. Blood 116:5907–5918

    CAS  PubMed  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    CAS  PubMed  Google Scholar 

  • McCuskey RS, McCuskey PA (1985) In vivo and electron microscopic studies of the splenic microvasculature in mice. Experientia 41:179–187

    CAS  PubMed  Google Scholar 

  • Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616

    CAS  PubMed  Google Scholar 

  • Mendelson K, Zygmunt T, Torres-Vazquez J, Evans T, Hla T (2013) Sphingosine-1-Phosphate receptors S1pr1 and S1pr2 cooperatively regulate embryonic vascular development. J Biol Chem 288:2145–2156

    Google Scholar 

  • Mendoza A, Breart B, Ramos-Perez WD, Pitt LA, Gobert M, Sunkara M, Lafaille JJ, Morris AJ, Schwab SR (2012) The transporter spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep 2:1104–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell J (1973) Lymphocyte circulation in the spleen: Marginal zone bridging channels and their possible role in cell traffic. Immunology 24:93–107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris MA, Gibb DR, Picard F, Brinkmann V, Straume M, Ley K (2005) Transient T cell accumulation in lymph nodes and sustained lymphopenia in mice treated with FTY720. Eur J Immunol 35:3570–3580

    CAS  PubMed  Google Scholar 

  • Muppidi JR, Arnon TI, Bronevetsky Y, Veerapen N, Tanaka M, Besra GS, Cyster JG (2011) Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. J Exp Med 208:1941–1948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, Ui M, Okajima F (2000) Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 352(Pt 3):809–815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, Tager AM, Luster AD, Mempel TR (2012) HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490:283–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ngo VN, Tang HL, Cyster JG (1998) Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 188:181–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieuwenhuis P, Ford WL (1976) Comparative migration of B- and T-lymphocytes in the rat spleen and lymph nodes. Cell Immunol 23:254–267

    CAS  PubMed  Google Scholar 

  • Ohnishi K, Melchers F, Shimizu T (2005) Lymphocyte-expressed BILL-cadherin/cadherin-17 contributes to the development of B cells at two stages. Eur J Immunol 35:957–963

    CAS  PubMed  Google Scholar 

  • Oo ML, Chang SH, Thangada S, Wu MT, Rezaul K, Blaho V, Hwang SI, Han DK, Hla T (2011) Engagement of S1P1-degradative mechanisms leads to vascular leak in mice. J Clin Invest 121:2290–2300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282:9082–9089

    CAS  PubMed  Google Scholar 

  • Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298

    CAS  PubMed  Google Scholar 

  • Park C, Hwang IY, Sinha RK, Kamenyeva O, Davis MD, Kehrl JH (2012) Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization. Blood 119:978–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel DD, Koopmann W, Imai T, Whichard LP, Yoshie O, Krangel MS (2001) Chemokines have diverse abilities to form solid phase gradients. Clin Immunol 99:43–52

    CAS  PubMed  Google Scholar 

  • Penela P, Ribas C, Aymerich I, Mayor F Jr (2009) New roles of G protein-coupled receptor kinase 2 (GRK2) in cell migration. Cell Adh Migr 3:19–23

    PubMed Central  PubMed  Google Scholar 

  • Pereira JP, An J, Xu Y, Huang Y, Cyster JG (2009a) Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol 10:403–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira JP, Kelly LM, Xu Y, Cyster JG (2009b) EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460:1122–1126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR, Cyster JG (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207:17–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28:122–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phan TG, Grigorova I, Okada T, Cyster JG (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000

    CAS  PubMed  Google Scholar 

  • Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17:159–165

    CAS  PubMed  Google Scholar 

  • Rosen H, Sanna MG, Cahalan SM, Gonzalez-Cabrera PJ (2007) Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol 28:102–107

    CAS  PubMed  Google Scholar 

  • Santos-Argumedo L, Kincade PW, Partida-Sanchez S, Parkhouse RM (1997) CD44-stimulated dendrite formation (‘spreading’) in activated B cells. Immunology 90:147–153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1985) Microcirculation in mouse spleen (nonsinusal) studied by means of corrosion casts. J Morphology 186:17–29

    Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1993) Comparative aspects of splenic microcirculatory pathways in mammals: the region bordering the white pulp. Scanning Microsc 7:613–628

    CAS  PubMed  Google Scholar 

  • Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J, Spatz JP, Schuler G, Forster R, Lutz MB, Sorokin L, Sixt M (2010) Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32:703–713

    CAS  PubMed  Google Scholar 

  • Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739

    CAS  PubMed  Google Scholar 

  • Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, Cyster JG, Matloubian M (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–544

    CAS  PubMed  Google Scholar 

  • Shoham AB, Malkinson G, Krief S, Shwartz Y, Ely Y, Ferrara N, Yaniv K, Zelzer E (2012) S1P1 inhibits sprouting angiogenesis during vascular development. Development 139:3859–3869

    PubMed  Google Scholar 

  • Sinha RK, Park C, Hwang IY, Davis MD, Kehrl JH (2009) B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30:434–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki K, Grigorova I, Phan TG, Kelly L, Cyster JG (2009) Visualizing B cell capture of cognate antigen from follicular dendritic cells. J Exp Med 206:1485–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone MB, Rosen H (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146:980–991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thangada S, Khanna KM, Blaho VA, Oo ML, Im DS, Guo C, Lefrancois L, Hla T (2010) Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J Exp Med 207:1475–1483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomura M, Itoh K, Kanagawa O (2010) Naive CD4 + T lymphocytes circulate through lymphoid organs to interact with endogenous antigens and upregulate their function. J Immunol 184:4646–4653

    CAS  PubMed  Google Scholar 

  • Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y, Miyawaki A, Kanagawa O (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc Natl Acad Sci USA 105:10871–10876

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Rooijen N (1973) Mechanism of follicular antigen trapping. Migration of antigen-antibody complexes from marginal zone towards follicle centres. Immunology 25:847–852

    PubMed Central  PubMed  Google Scholar 

  • Veerman AJ, van Ewijk W (1975) White pulp compartments in the spleen of rats and mice. A light and electron microscopic study of lymphoid and non-lymphoid cell types in T- and B- areas. Cell Tissue Res 156:417–441

    CAS  PubMed  Google Scholar 

  • Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vora KA, Nichols E, Porter G, Cui Y, Keohane CA, Hajdu R, Hale J, Neway W, Zaller D, Mandala S (2005) Sphingosine 1-phosphate receptor agonist FTY720-phosphate causes marginal zone B cell displacement. J Leukoc Biol 78:471–480

    CAS  PubMed  Google Scholar 

  • Waite JC, Leiner I, Lauer P, Rae CS, Barbet G, Zheng H, Portnoy DA, Pamer EG, Dustin ML (2011) Dynamic imaging of the effector immune response to listeria infection in vivo. PLoS Pathog 7:e1001326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watterson KR, Johnston E, Chalmers C, Pronin A, Cook SJ, Benovic JL, Palmer TM (2002) Dual regulation of EDG1/S1P(1) receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2. J Biol Chem 277:5767–5777

    CAS  PubMed  Google Scholar 

  • Weill JC, Weller S, Reynaud CA (2009) Human marginal zone B cells. Annu Rev Immunol 27:267–285

    CAS  PubMed  Google Scholar 

  • Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW, Shulman Z, Hartmann T, Sixt M, Cyster JG, Alon R (2007) Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat Immunol 8:1076–1085

    CAS  PubMed  Google Scholar 

  • Yi T, Wang X, Kelly LM, An J, Xu Y, Sailer AW, Gustafsson JA, Russell DW, Cyster JG (2012) Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37:535–548

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Cyster lab members for helpful discussions. T.I.A. was supported by a Jane Coffin Child’s fellowship and J.G.C. is an Investigator of the Howard Hughes Medical Institute. Work discussed in this review was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tal I. Arnon or Jason G. Cyster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arnon, T.I., Cyster, J.G. (2014). Blood, Sphingosine-1-Phosphate and Lymphocyte Migration Dynamics in the Spleen. In: Oldstone, M., Rosen, H. (eds) Sphingosine-1-Phosphate Signaling in Immunology and Infectious Diseases. Current Topics in Microbiology and Immunology, vol 378. Springer, Cham. https://doi.org/10.1007/978-3-319-05879-5_5

Download citation

Publish with us

Policies and ethics