Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 820 Accesses

Abstract

A consistent quantum theory of gravity is mainly called for by a conceptual clash between the two major achievements of physicists of the twentieth century.

Nous sommes en 50 avant Jésus-Christ. Toute la Gaule est occupée par les Romains... Toute? Non! Un village peuplé d’irréductibles Gaulois résiste encore et toujours à l’envahisseur. Et la vie n’est pas facile pour les garnisons de légionnaires romains des camps retranchés de Babaorum, Aquarium, Laudanum et Petibonum...

René Goscinny and Albert Uderzo, Astérix le Gaulois

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can for instance quote Straumann [72]: “This has been disturbing to many people, but one simply has to get used to this fact. There is no energy-momentum tensor for the gravitational field”.

  2. 2.

    Obviously, this ‘before’ does not refer to time, but rather to the abstract notion of scale which is assumed to take over when no space-time structure is available anymore.

References

  1. Einstein A, Grossmann M (1913) Entwurf einer verallgemeinerten relativitststheorie und eine theorie der gravitation. Zeitschrift fnr Mathematik und Physik 62:225–261

    Google Scholar 

  2. Wald RM (2010) General relativity. University of Chicago press, Chicago

    Google Scholar 

  3. Einstein A (1915) Entwurf einer verallgemeinerten relativitStstheorie und eine theorie der gravitation. Preussische Akademie der Wissenschaften, Sitzungsberichte, pp 844–847

    Google Scholar 

  4. Bohr N (1983) Discussion with einstein on epistemological problems in atomic physics. In: Wheeler JA, Zurek WH (eds) Quantum theory and measurement, chapter I.1. Princeton University Press, Princeton

    Google Scholar 

  5. Gottfried K, Yan TM (2004) Quantum mechanics: Fundamentals. http://www.springer.com/physics/quantum+physics/book/978-0-387-95576-6

  6. Weinberg S (1996) The quantum theory of fields, volume 1. Cambridge university press, Cambridge

    Google Scholar 

  7. Ryder LH (1996) Quantum field theory. Cambridge university press, Cambridge

    Google Scholar 

  8. DeWitt-Morette C (2011) The pursuit of quantum gravity. Springer, Berlin

    Google Scholar 

  9. Rovelli C (2004) Quantum gravity. Cambridge University Press, Cambridge

    Google Scholar 

  10. Keifer C (2004) Quantum gravity. Oxford University Press, Oxford

    Google Scholar 

  11. Unruh WG (1984) Steps towards a quantum theory of gravity. Quantum Theor Gravity 1:234

    ADS  MathSciNet  Google Scholar 

  12. Ashtekar A, Tate RS (1991) Lectures on non-perturbative canonical gravity, volume 6. World Scientific Publishing Company Incorporated, Singapore

    Google Scholar 

  13. Thiemann T (2007) Modern canonical quantum general relativity. Cambridge University Press, Cambridge

    Google Scholar 

  14. Gambini R, Pullin J (2011) A first course in loop quantum gravity. Oxford University Press, USA

    Book  MATH  Google Scholar 

  15. Bojowald M (2011) Canonical gravity and applications. Cambridge University Press Cambridge, Cambridge

    Google Scholar 

  16. Perez A (2004) Introduction to loop quantum gravity and spin foams. arXiv:gr-qc/0409061

  17. Perez A (2013) The Spin foam approach to quantum gravity. Living Rev Rel 16:3. arXiv:1205.2019

    Google Scholar 

  18. Abbott LF (1982) Introduction to the background field method. Acta Phys Polon B 13(33):5

    Google Scholar 

  19. Goroff MH, Sagnotti A (1986) The ultraviolet behavior of Einstein gravity. Nucl Phys B 266(3):709–736

    Google Scholar 

  20. Smolin L (2005) The case for background independence. arXiv:hep-th/0507235

  21. Bojowald M (2001) Absence of a singularity in loop quantum cosmology. Physical Review Letters 86(23):5227–5230

    Article  ADS  MathSciNet  Google Scholar 

  22. Ashtekar A, Pawlowski T,Singh P (2006) Quantum nature of the big bang. Phys Rev Lett 96:141301. arXiv:gr-qc/0602086

    Google Scholar 

  23. Ashtekar A, Singh P (2011) Loop quantum cosmology: a status report. Class Quantum Gravity 28(21):213001

    Article  ADS  MathSciNet  Google Scholar 

  24. Bojowald M (2011) Quantum cosmology: a fundamental description of the universe, vol 835. Springer, New York

    Google Scholar 

  25. Bojowald M, Paily GM (2012) Deformed general relativity and effective actions from loop quantum gravity. Phys Rev D 86:104018. arXiv:1112.1899

    Google Scholar 

  26. Burgess CP (2004) Quantum gravity in everyday life: general relativity as an effective field theory. Living Rev Rel 7:5. arXiv:gr-qc/0311082

    Google Scholar 

  27. Donoghue JF (2012) The effective field theory treatment of quantum gravity. AIP Conf Proc 1483:73–94. arXiv:1209.3511

  28. Zwiebach B (2004) A first course in string theory. Cambridge university press, Cambridge

    Google Scholar 

  29. Weinberg S (1978) Critical phenomena for field theorists. In understanding the fundamental constituents of matter. Springer, New York, pp 1–52

    Google Scholar 

  30. Niedermaier M, Reuter M (2006) The asymptotic safety scenario in quantum gravity. Living Rev Rel 9(5):173

    Google Scholar 

  31. Reuter M, Saueressig F (2012) Quantum einstein gravity. New J Phys 14:055022. arXiv:1202.2274

    Google Scholar 

  32. Benedetti D (2013) On the number of relevant operators in asymptotically safe gravity. Europhys. Lett 102:20007. arXiv:1301.4422

    Google Scholar 

  33. Nicolai H, Peeters K, Zamaklar M (2005) Loop quantum gravity: an outside view. Class Quant Grav 22:R193. arXiv:hep-th/0501114

  34. PAM Dirac (1964) Lectures on quantum mechanics. Yeshiva University, Physics Department, New York

    Google Scholar 

  35. DeWitt BS (1967) Quantum theory of gravity. i. the canonical theory. Phys Rev 160(5):1113

    Google Scholar 

  36. DeWitt BS (1967) Quantum theory of gravity. ii. The manifestly covariant theory. Phys Rev 162(5):1195

    Google Scholar 

  37. Baez JC (1998) Spin foam models. Class Quant Grav 15:1827–1858. arXiv:gr-qc/9709052

    Google Scholar 

  38. Oriti D (2001) Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity. Rep Prog Phys 64(12):1703

    Article  ADS  MathSciNet  Google Scholar 

  39. Sergei Alexandrov, Marc Geiller, and Karim Noui. Spin Foams and Canonical Quantization. SIGMA, 8:055, 2012. arXiv:1112.1961

  40. Ashtekar Abhay (1986) New variables for classical and quantum gravity. Phys Rev Lett 57(18):2244–2247

    Article  ADS  MathSciNet  Google Scholar 

  41. Barbero F (1995) Real ashtekar variables for lorentzian signature space times. Phys Rev D 51:5507–5510. arXiv:gr-qc/9410014

    Google Scholar 

  42. Jacobson T (1995) Thermodynamics of space-time: The einstein equation of state. Phys Rev Lett 75:1260–1263. arXiv:gr-qc/9504004

    Google Scholar 

  43. Sindoni L (2012) Emergent models for gravity: an overview of microscopic models. SIGMA, 8:027. arXiv:1110.0686

  44. Barcelo C, Liberati S, Visser M (2005) Analogue gravity. Living Rev Rel 8:12. arXiv:gr-qc/0505065

    Google Scholar 

  45. Rovelli C, Smolin L (1995) Discreteness of area and volume in quantum gravity. Nucl Phys B442:593–622. arXiv:gr-qc/9411005

    Google Scholar 

  46. Diaz-Polo J, Pranzetti D (2012) Isolated Horizons and black hole entropy in loop quantum gravity. SIGMA 8:048. arXiv:1112.0291

  47. Ashtekar A, Lewandowski J (1995) Differential geometry on the space of connections via graphs and projective limits. J Geom Phys 17:191–230. arXiv:hep-th/9412073

    Google Scholar 

  48. Ashtekar A, Lewandowski J (1995) Projective techniques and functional integration for gauge theories. J Math Phys 36:2170–2191. arXiv:gr-qc/9411046

    Google Scholar 

  49. Freidel L, Geiller M, Ziprick J (2013) Continuous formulation of the loop quantum gravity phase space. Class Quant Grav 30:085013. arXiv:1110.4833

    Google Scholar 

  50. Oriti D (2007) Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity. PoS, QG-PH:030. arXiv:0710.3276

  51. Dittrich B (2012) From the discrete to the continuous: towards a cylindrically consistent dynamics. New J Phys 14:123004. arXiv:1205.6127

  52. Rovelli C (2011) Zakopane lectures on loop gravity. PoS, QGQGS2011:003. arXiv:1102.3660

  53. Barrett JW, Crane L (2000) A lorentzian signature model for quantum general relativity. Class Quant Grav 17:3101–3118. arXiv:gr-qc/9904025

    Google Scholar 

  54. Engle J, Livine E, Pereira R, Rovelli C (2008) LQG vertex with finite Immirzi parameter. Nucl Phys B799:136–149. arXiv:0711.0146

  55. Freidel L, Krasnov K (2008) A new spin foam model for 4d gravity. Class Quant Grav 25:125018. arXiv:0708.1595

    Google Scholar 

  56. Dupuis M, Livine ER (2011) Holomorphic simplicity constraints for 4d spinfoam models. Class Quant Grav 28:215022. arXiv:1104.3683

    Google Scholar 

  57. Dupuis M, Freidel L, Livine ER, Speziale S (2012) Holomorphic lorentzian simplicity constraints. J. Math. Phys. 53:032502. arXiv:1107.5274

    Google Scholar 

  58. Baratin A, Oriti D (2011) Quantum simplicial geometry in the group field theory formalism: reconsidering the barrett-crane model. New J Phys 13:125011. arXiv:1108.1178

    Google Scholar 

  59. Baratin A, Oriti D (2012) Group field theory and simplicial gravity path integrals: a model for Holst-plebanski gravity. Phys Rev D 85:044003. arXiv:1111.5842

    Google Scholar 

  60. Freidel L (2005) Group field theory: an overview. Int J Theor Phys 44:1769–1783. arXiv:hep-th/0505016

    Google Scholar 

  61. Oriti D (2006) The group field theory approach to quantum gravity. arXiv:gr-qc/0607032

  62. Oriti D (2011) The microscopic dynamics of quantum space as a group field theory. In: Ellis G, Murugan J, Weltman A (eds) Foundations of Space and Time: Reflections on Quantum Gravity, Cambridge University Press, Cambridge, 257–320. arXiv:1110.5606. http://www.cambridge.org/fr/academic/subjects/physics/theoretical-physics-and-mathematical-physics/foundations-space-and-time-reflections-quantum-gravity?format=HB

  63. Krajewski T (2011) Group field theories. PoS, QGQGS2011:005. arXiv:1210.6257

  64. Rivasseau V (1991) From perturbative to constructive renormalization. Princeton University Press, New Jersey

    Google Scholar 

  65. Zinn-Justin J (2002) Quantum field theory and critical phenomena. Oxford Science Publications, Oxford

    Google Scholar 

  66. Salmhofer M (1999) Renormalization. Springer Verlag, Berlin

    Google Scholar 

  67. Rivasseau V (2003) An introduction to renormalization. In: Poincaré seminar 2002, Springer, Berlin, pp 139–177

    Google Scholar 

  68. Hollowood TJ (2013) Renormalization group and fixed points in quantum field theory. Springer, New York

    Google Scholar 

  69. Gurau R, Rivasseau V, Sfondrini A (2014) Renormalization: an advanced overview. arXiv:1401.5003 [hep-th]

  70. Weinberg S (1996) The quantum theory of fields: foundations, volume 1. Cambridge university press, Cambridge

    Google Scholar 

  71. Wilson KG (1965) Nobel lecture. Nobelprize Org

    Google Scholar 

  72. Straumann N (2004) General relativity with applications to astrophysics. Springer, Berlin

    Google Scholar 

  73. Rivasseau V (2011) Quantum gravity and renormalization: the tensor track. AIP Conf Proc 1444:18–29. arXiv:1112.5104

  74. Rivasseau V (2012) The tensor track: an update based on a talk given at the XXIX International Colloquium on Group-Theoretical Methods in Physics in Tian-Jin (China). arXiv:1209.5284 [hep-th]

  75. Rivasseau V (2013) The tensor track, III. arXiv:1311.1461 [hep-th]

  76. Livine ER, Oriti D, Ryan JP (2011) Effective hamiltonian constraint from group field theory. Class Quant Grav 28:245010. arXiv:1104.5509

    Google Scholar 

  77. Gielen S, Oriti D, Sindoni L (2013) Cosmology from group field theory formalism for quantum gravity. Phys Rev Lett 111:031301. arXiv:1303.3576

    Google Scholar 

  78. Dittrich B (2011) How to construct diffeomorphism symmetry on the lattice. PoS, QGQGS2011:012. arXiv:1201.3840

  79. Bahr B, Dittrich B, Hellmann F, Kaminski W (2013) Holonomy Spin foam models: definition and coarse graining. Phys Rev D 87:044048. arXiv:1208.3388

    Google Scholar 

  80. David F (1985) Planar diagrams, two-dimensional lattice gravity and surface models. Nucl Phys B 257:45–58

    Article  ADS  Google Scholar 

  81. PH Ginsparg (1991) Matrix models of 2-d gravity. arXiv:hep-th/9112013

  82. Di Francesco P, Ginsparg PH, Zinn-Justin J (1995) 2-D gravity and random matrices. Phys Rept 254:1–133. arXiv:hep-th/9306153

    Google Scholar 

  83. Ginsparg PH, Moore GW (1993) Lectures on 2-D gravity and 2-D string theory. arXiv:hep-th/9304011

  84. Ambjorn J, Durhuus B, Jonsson T (1991) Three-dimensional simplicial quantum gravity and generalized matrix models. Mod Phys Lett A6:1133–1146

    Article  ADS  MathSciNet  Google Scholar 

  85. Gross M (1992) Tensor models and simplicial quantum gravity in> 2-d. Nucl Phys Proc Suppl 25A:144–149

    Article  ADS  MATH  Google Scholar 

  86. Sasakura N (1991) Tensor model for gravity and orientability of manifold. Mod Phys Lett A6:2613–2624

    Article  ADS  MathSciNet  Google Scholar 

  87. Gurau R, Ryan JP (2013) Colored tensor models—a review. SIGMA 8:020. arXiv:1109.4812

  88. Gurau R (2011) Colored group field theory. Commun Math Phys 304:69–93. arXiv:0907.2582

    Google Scholar 

  89. Boulatov DV (1992) A model of three-dimensional lattice gravity. Mod Phys Lett A7:1629–1646. arXiv:hep-th/9202074

    Google Scholar 

  90. Carrozza S, Oriti D (2012) Bounding bubbles: the vertex representation of 3d group field theory and the suppression of pseudo-manifolds. Phys Rev D 85:044004. arXiv:1104.5158

    Google Scholar 

  91. Carrozza S, Oriti D (2012) Bubbles and jackets: new scaling bounds in topological group field theories. JHEP, 1206:092. arXiv:1203.5082

  92. Carrozza S, Oriti D, Rivasseau V (2012) Renormalization of tensorial group field theories: abelian U(1) models in four dimensions. Commun Math Phys 327:603–641. arXiv:1207.6734. doi:10.1007/s00220-014-1954-8

  93. Carrozza S, Oriti D, Rivasseau V (2013) Renormalization of an SU(2) tensorial group field theory in three dimensions. Commun Math Phys. arXiv:1303.6772. doi:10.1007/s00220-014-1928-x

  94. Carrozza S (In preparation)

    Google Scholar 

  95. Baratin A, Carrozza S, Oriti D, Ryan JP, Smerlak M (2013) Melonic phase transition in group field theory. arXiv:1307.5026 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Carrozza .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carrozza, S. (2014). Introduction and Motivation. In: Tensorial Methods and Renormalization in Group Field Theories. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05867-2_1

Download citation

Publish with us

Policies and ethics