Cryogels for Biotechnological Applications

  • Bo MattiassonEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 263)


Cryogels are formed in a semifrozen state when the solvent is frozen, but solutes are still soluble. The ice crystals are porogens and, upon thawing the system, pores appear where the frozen solvent was found earlier. Such gels have large pores, are elastic, and offer interesting opportunities in biotechnology. Cryogels with their large pores can meet demands that traditional chromatographic media cannot. This also opens up opportunities for the separation of cells because upon passage through the gel cells may interact with specific groups on the pore walls, thereby becoming retarded and/or captured. A range of applications have been studied: isolation of microbial cells, capturing of cancer cells, and use of cryogels as matrices for immobilized cell reactors. Furthermore, the robustness of the gels allows new applications, for example in environmental separation.


Cell chromatography Immobilized cells Molecular imprinting Cell bioreactors Composite cryogels 





Bovine serum albumin


Extra capillary space


Hollow fiber reactor


Heavy metal ions


Human serum albumin


Intra capillary space




Molecularly imprinted polymer


Macroporous gel particle


Non-imprinted polymer


N-Isopropyl acrylamide




Polyethylene glycol


Poly(2-hydroxyethyl methacrylate)


Polyvinyl alcohol


Scanning electron microscope



This work was supported by The Swedish Research Council.


  1. 1.
    Varfolomeyev SD, Rainina EI, Lozinsky VI, Kalyuzhny SV, Sinitsyn AP, Makhlis TA, Bachurina GP, Bokova IG, Sklyankina OA, Agafonov EB (1990) Application of polyvinyl alcohol cryogels for immobilization of mesophilic and thermophilic microorganisms. In: De Bont JAM, Visser J, Mattiasson B, Tramper J (eds) Physiology of immobilized cells. Elsevier, Amsterdam, pp 325–330Google Scholar
  2. 2.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451Google Scholar
  3. 3.
    Plieva FM, De Seta E, Galaev IY, Mattiasson B (2009) Macroporous elastic polyacrylamide monolith columns: processing under compression and scale up. Sep Purif Technol 65:110–116Google Scholar
  4. 4.
    Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479Google Scholar
  5. 5.
    Gough S, Barron N, Zubov AL, Lozinsky VI, McHale AP (1998) Production of ethanol from molasses at 45 °C using Kluyveromyces marxianus IMB3 immobilized in calcium alginate gels and poly(vinyl alcohol) cryogel. Bioproc Eng 19:87–90Google Scholar
  6. 6.
    Efremenko EN, Nikolskaya AB, Lyagin IV, Senko OV, Makhlis TA, Stepanov NA, Maslova OV, Mamedova F, Varfolomeev SD (2012) Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 114:342–348Google Scholar
  7. 7.
    Velizarov SG, Rainina EI, Sinitsyn AP, Varfolomeyev SD (1992) Production of L-lysine by free and PVA-cryogel immobilized Corynebacterium glutamicum cells. Biotechnol Lett 14:291–296Google Scholar
  8. 8.
    Efremenko E, Spiricheva O, Varfolomeyev S, Lozinsky V (2006) Rhizopus oryzae fungus cells producing L (+)-lactic acid: Kinetic and metabolic parameters of free and PVA-cryogel- entrapped mycelium. Appl Microbiol Biotechnol 72:480–485Google Scholar
  9. 9.
    Efremenko E, Spiricheva OV, Veremeenko DV, Baibak AV, Lozinsky VI (2006) L(+)-lactic acid production using poly(vinyl alcohol)-cryogel-entrapped Rhizopus oryzae fungal cells. J Chem Technol Biotechn 81:519–522Google Scholar
  10. 10.
    Alekseiva P, Petricheva E, Konstantiov H (1998) Enhancement of acid proteinase production by the fungus Humicaola lutea 120-5 immobilized in crosslinked poly(vinyl alcohol) mixed with poly(ethylene glycol). Proc Biochem 33:725–728Google Scholar
  11. 11.
    Long ZE, Huang Y, Cai Z, Cong W, Ouyang F (2003) Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers. Biotechnol Lett 25:245–249Google Scholar
  12. 12.
    Martins RF, Plieva FM, Santos A, Hatti-Kaul R (2005) Integrated immobilized cell reactor-adsorption system for β-cyclodextrin production: A model study using PVA-cryogel entrapped Bacillus agaradharens. Biotechnol Lett 25:1537–1543Google Scholar
  13. 13.
    Lusta KA, Chung IK, Sul IW, Park HS, Shin DI (2000) Immobilization of fungus Aspergillus sp. by a novel cryogel technique for production of extracellular hydrolytic enzymes. Proc Biochem 35:1177–1182Google Scholar
  14. 14.
    El-Hadi AA (2003) Factors affecting the production of prednisolone by immobilization of Bacillus pumilus E601 cells in poly(vinyl alcohol) cryogels produced by radiation polymerization. Proc Biochem 38:1659–1664Google Scholar
  15. 15.
    Szczesna-Antczak M, Antczak T, Bielecki S (2004) Stability of extracellular proteinases productivity by Bacillus subtilis cells immobilized in PVA-cryogel. Enzyme Microb Technol 34:168–176Google Scholar
  16. 16.
    Bezbradica D, Obradovic B, Leskosek-Cukalovic I, Bugarksi B, Nedovic V (2007) Immobilization of yeast cells in PVA particles for beer fermentation. Proc Biochem 42:1348–1351Google Scholar
  17. 17.
    Kim J-W, Rainina EI, Mulbry WW, Engler CR, Wild JR (2002) Enhanced-rate biodegradation of organophosphate neurotoxins by immobilized non-growing bacteria. Biotechnol Prog 18:429–436Google Scholar
  18. 18.
    Fokina V, Suzina N, Arinbasarova A, Zubov A, Loziinsky V, Koshcheyenko K (1996) Immobilization of Arthrobacter globiformis 193 cells in PVA cryogel. Dehydrogenation of steroid substrates. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier, Amsterdam, pp 90–97Google Scholar
  19. 19.
    Manolov RJ (1992) Batch and continuous ribonuclease production by immobilized Aspergillus clavatus cells in a bubble-column bioreactor. Appl Microbiol Biotechnol 37:32–36Google Scholar
  20. 20.
    Martynenko NN, Gracheva IM, Sarishvili NG, Zubov AL, El-Regisatan GI, Lozinsky VI (2004) Immobilization of champagne yeasts by inclusion into cryogels of polyvinyl alcohol: means of preventing cell release from the carrier matrix. Appl Biochem Microbiol 40:158–164 (translated from Russian)Google Scholar
  21. 21.
    Stanescu MD, Fogorasi M, Shaskolskiy BL, Gavrilas S, Lozinsky VL (2010) New potential biocatalysts by laccase immobilization in PVA cryogel type carrier. Appl Biochem Biotechnol 160:1947–1954Google Scholar
  22. 22.
    Hedström M, Plieva FM, Galaev IY, Mattiasson B (2008) Monolithic macroporous albumin/chitosan gel: a new matrix for enzyme immobilization. Anal Bioanal Chem 390:907–912Google Scholar
  23. 23.
    Busto MD, Meza V, Ortega N, Perez-Mateos M (2007) Immobilization of naringinase from Aspergillus niger CECT 2088 in poly (vinyl alcohol) cryogels for the debittering of juices. Food Chem 104:1177–1182Google Scholar
  24. 24.
    Doretti L, Ferrara D, Lora S, Schiavon F, Veronese FM (2000) Acetyl choline biosensor involving entrapment of acetylcholine esterase and poly (ethylene glycol)-modified choline oxidase in a poly (vinyl alcohol) cryogel membrane. Enzyme Microb Technol 27:279–285Google Scholar
  25. 25.
    Belokon YN, Kochetkov KA, Plieva FM, Ikonnikov NS, Maleev VI, Parmar VS, Kumar R, Lozinsky VI (2000) Enantioselective hydrolysis of a Shiff’s based of DL-phenylalanine ethyl ester in water-poor media via the reaction catalyzed with a-chymotrypsin immobilized on hydrophilic macroporous gel support. Appl Biochem Biotechnol 84:97–106Google Scholar
  26. 26.
    Doretti L, Ferrara D, Gattolin P, Lora S, Schiavon F, Veronese FM (1998) PEG-modified glucose oxidase immobilized on PVA cryogel membrane for amperometric biosensor applications. Talanta 45:891–898Google Scholar
  27. 27.
    Plieva FM, Kochetkov KA, Singh I, Parmar VS, Belkon YN, Lozinsky VI (2000) Immobilization of hog pancrease lipase in macroporous poly (vinyl alcohol)-cryogel carrier for the biocatalysis in water-poor media. Biotechnol Lett 22:551–554Google Scholar
  28. 28.
    Szczesna-Antczak M, Antczak T, Rzyska M, Bielecki S (2002) Catalytic properties of membrane-bound Mucor lipase immobilized in a hydrophilic carrier. J Mol Catal B-Enzym 19–20:261–268Google Scholar
  29. 29.
    Kuyukina MS, Ivshina IB, Serebrennikova MK, Krivorutchko AB, Podorozhko EA, Ivanov RV, Lozinsky VI (2009) Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells. Int Biodeter Biodegr 63:427–432Google Scholar
  30. 30.
    Efremenko E, Senko O, Zubaerova D, Podorozhko E, Lozinsky VI (2008) New biocatalyst with multiple enzymatic activities for treatment of complex wastewater. Food Technol Biotech 46:208–212Google Scholar
  31. 31.
    Kuyukina MS, Rubtsova EV, Ivshina IB, Ivanov RV, Lozinsky VI (2009) Selective adsorption of hydrocarbon-oxidizing Rhodococcus cells in a column with hydrophobized poly(acrylamide) cryogel. J Microbiol Meth 79:76–81Google Scholar
  32. 32.
    Kuyukina MS, Ivshina IB, Kamenskikh TN, Bulicheva AV, Stukova GI (2013) Survival of cryogel-immobilized Rhodococcus strains in crude oil-contaminated soil and their impact on biodegradation efficiency. Int Biodeter Biodegr 84:118–125Google Scholar
  33. 33.
    Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilized in polyvinyl alcohol. Int Biodeter Biodegr 54:167–174Google Scholar
  34. 34.
    Siripattanakul S, Wirojanagud W, McEvoy J, Khan E (2008) Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation. Water Air Soil Pollut 8:257–266Google Scholar
  35. 35.
    Rainina EI, Badalian IE, Ignatov OV, Fedorov AY, Simonian AL, Varfolomeyev SD (1996) Cell biosensor for detection of phenol in aqueous solutions. Appl Biochem Biotechnol 56:117–127Google Scholar
  36. 36.
    Simonian AL, Rainina EI, Lozinsky VI, Badalian IE, Khachatrian GE, Tatikian SS, Makhlis TA, Vorfolomeyev SD (1992) A biosensor for L-proline determination by use of immobilized microbial cells. Appl Biochem Biotechnol 36:199–210Google Scholar
  37. 37.
    Rainina EI, Efremenco EN, Varfolomeyev SD (1996) The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins. Biosens Bioelectron 11:991–1000Google Scholar
  38. 38.
    Philp JC, Balmand S, Hajto E, Bailey MJ, Wiöes S, Whiteley AS, Lilley AK, Hajto J, Dunbar SA (2003) Whole cell immobilized biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Anal Chim Acta 487:61–74Google Scholar
  39. 39.
    Häggström L, Enfors SO (1982) Continuous production of butanol with immobilized cells of Clostridium acetobutylicum. Appl Biochem Biotechnol 7:35–37Google Scholar
  40. 40.
    Senthuran A, Senthuran V, Hatti-Kaul R, Mattiasson B (1999) Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization. J Biotechnol 73:61–70Google Scholar
  41. 41.
    Plieva FM, Oknianska A, Degerman E, Mattiasson B (2008) Macroporous gel particles as robust macroporous matrices for cell immobilization. Biotechnol J 3:410–417Google Scholar
  42. 42.
    Plieva FM, Galaev IY, Mattiasson B (2007) Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate containing fluids and cell culture applications. J Sep Sci 30:1657–1671Google Scholar
  43. 43.
    Nilsang S, Nehru V, Plieva FM, Nandakumar KS, Rakshit SK, Holmdahl R, Mattiasson B, Kumar A (2008) Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnol Prog 24:1122–1131Google Scholar
  44. 44.
    Kumar A, Rodrigues-Caballero A, Plieva FM, Galaev IY, Nandakumar KS, Kamihira M, Holmdal R, Orfao A, Mattiasson B (2005) Affinity binding of cells to cryogel adsorbents with immobilized specific ligands: effect of ligand coupling and matrix architexture. J Mol Recognit 18:84–93Google Scholar
  45. 45.
    Kirsebom H, Mattiasson B, Galaev IY (2009) Building macroporous material from microgels and microbes via one-step cryogelation. Langmuir 25:8462–8465Google Scholar
  46. 46.
    Kirsebom H, Mattiasson B (2011) Cryostructuration as a tool for preparing highly porous polymer materials. Polym Chem 2:1059–1062Google Scholar
  47. 47.
    Zaushitsyna O, Berillo D, Kirsebom H, Mattiasson B (2014) Cryostructured and crosslinked viable cells forming monoliths suitable for bioreactor applications. Top Catal 57:339–348. doi: 10.1007/s11244-013-0189-9 Google Scholar
  48. 48.
    Aragao Börner R, Zaushitsyna O, Derillo D, Scaccia N, Mattiasson B, Kirsebom H (2013) Immobilization of Clostridium acetobutylicum DSM 792 as macroporous aggregates through cryogelation for butanol production. Proc Biochem 49:10–18Google Scholar
  49. 49.
    Elowsson L, Kirsebom H, Carmignac V, Mattiasson B, Durbeej M (2013) Evaluation of macroporous blood and plasma scaffolds for skeletal muscle tissue engineering. Biomater Sci 4:402–408Google Scholar
  50. 50.
    Yang ST, Luo J, Chen C (2004) A fibrous-bed bioreactor of continuous production of monoclonal antibody by hybridoma. Adv Biochem Eng Biotechnol 87:61–96Google Scholar
  51. 51.
    Hu X, Xiao C, Huang Z, Zhang Z, Li Z (2000) Pilot production of u-PA with porous microcarrier cell culture. Cytotechnology 33:13–19Google Scholar
  52. 52.
    Kumar A, Bansal V, Nandakumar KS, Galaev IY, Roychourhury PK, Holmdahl R, Mattiasson B (2006) Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices. Biotechnol Bioeng 93:636–646Google Scholar
  53. 53.
    Nilsang S, Nandakumar KS, Galaev IY, Rakshit SK, Holmdahl R, Mattiasson B, Kumar A (2007) Monoclonal antibody production using a new supermacroporous cryogel bioreactor. Biotechnol Prog 23:932–939Google Scholar
  54. 54.
    Arvidsson P, Plieva FM, Savina IN, Lozinsky VI, Fexby S, Bülow L, Galaev IY, Mattiasson B (2002) Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns. J Chromatogr A 977:27–38Google Scholar
  55. 55.
    Daniak MB, Plieva FM, Galaev IY, Hatti-Kaul R, Mattiasson B (2005) Cell chromatography: separation of different microbial cells using IMAC supermacroporous monolithic columns. Biotechnol Progr 21:644–6649Google Scholar
  56. 56.
    Kumar A, Plieva FM, Galaev IY, Mattiasson B (2003) Affinity fractionation of lymphocytes using a monolithic cryogel. J Immunol Methods 283:185–194Google Scholar
  57. 57.
    Dainiak MB, Kumar A, Galaev IY, Mattiasson B (2006) Detachment of affinity-captured bioparticles by elastic deformation of a macroporous hydrogel. Proc Natl Acad Sci USA 103:849–854Google Scholar
  58. 58.
    Galaev IY, Dainiak MB, Plieva FM, Mattiasson B (2007) Effect of matrix elasticity on affinity binding and release of bioparticles. Elution of bound cells by temperature-induced shrinkage of the smart macroporous hydrogel. Langmuir 23:35–40Google Scholar
  59. 59.
    Tellum M, Hansson MJ, Dainiak MB, Månsson R, Surve S, Elmér E, Önnerfjord P, Mattiasson G (2006) Binding mitochondria to cryogel monoliths allows detection of proteins specially released following permeability transition. Anal Biochem 348:209–221Google Scholar
  60. 60.
    Ahlqvist J, Kumar A, Sundström H, Ledung E, Hörnsten EG, Enfors S-O, Mattiasson B (2006) Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies. J Biotechnol 122:216–225Google Scholar
  61. 61.
    Noppe W, Plieva F, Galaev IY, Mattiasson B, Deckmyn H (2006) Immobilized peptide displaying phages as affinity ligands. Purification of lactoferrin from defatted milk. J Chromatogr 1101:79–85Google Scholar
  62. 62.
    Noppe W, Plieva F, Vanhoorelbeke K, Deckmyn H, Tuncel M, Tuncel A, Galaev IY, Mattiasson B (2007) Macroporous monolithic gels, cryogels, with immobilized phages from phage-display library as a new platform for fat development of affinity adsorbent capable of target capture from crude feeds. J Biotechnol 131:293–299Google Scholar
  63. 63.
    Noppe W, Plieva F, Galaev IY, Pottel H, Deckmyn H, Mattiasson B (2009) Chromato-panning: an efficient new mode of identifying suitable ligands from phage display libraries. BMC Biotechnol 9:21Google Scholar
  64. 64.
    Kovac K, Gutiérrez-AguirreI BM, PeterkaM P-PM, RavnikarM ZMJ, SchultzAC RP (2009) A novel method for concentrating hepatitis A virus and caliciviruses from bottled water. J VirolMethods 162:272–275Google Scholar
  65. 65.
    Plieva FM, Savina IN, Deraz S, Andersson J, Galaev IY, Mattiasson B (2004) Characterization of supermacroporous monolithic polyacrylamide based matrices designed for chromatography of bioparticles. J Chromatogr B 807:129–137Google Scholar
  66. 66.
    Savina IN, Galaev IY, Mattiasson B (2005) Anion-exchange supermacroporous monolithic matrices with grafted polymer brushes of N, N-dimethylaminoethylmethacrylate. J Chromatogr A 1092:199–205Google Scholar
  67. 67.
    Savina IN, Mattiasson B, Galaev IY (2005) Graft polymerization of acrylic acid onto macroporous polyacrylamide gel (cryogel) by potassium diperiodateocuprate. Polymer 46:9596–9603Google Scholar
  68. 68.
    Savina IN, Mattiasson B, Galaev IY (2006) Graft polymerization of vinyl monomers inside macroporous polyacrylamide gel, cryogel, in aqueous and aqueous-organic media initiated by diperiodatocuproate(III) complexes. J Polym Sci Polym Chem 44:1952–1963Google Scholar
  69. 69.
    Savina IN, Galaev IY, Mattiasson B (2006) Ion-exchange macroporous hydrophilic gel monolith with grafted polymer brushes. J Mol Recognit 19:315–321Google Scholar
  70. 70.
    Yao K, Yun J, Shen S, Chen F (2007) In-situ graft-polymerization preparation of cation-exchange supermacroporus cryogel with sulfo groups in glass columns. J Chromatogr 1157:246–251Google Scholar
  71. 71.
    Hanora A, Savina IN, Plieva FM, Izumrudov VA, Mattiasson B, Galaev IY (2006) Direct capture of plasmid DNA from non-clarified bacterial lysate using polycation-grafted monoliths. J Biotechnol 123:343–355Google Scholar
  72. 72.
    Ünlü N, Ceylan S, Erzengin M, Odabasi M (2011) Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels. J Sept Sci 34:2173–2180Google Scholar
  73. 73.
    Erzengin M, Ünlü N, Odabasi M (2011) Novel adsorbent for protein chromatography: Supermacroporous monolithic cryogel embedded with Cu2+-attached sporopollenin particles. J Chromatogr 1218:484–490Google Scholar
  74. 74.
    Xu P, Yao Y, Shen S, Yun J, Yao K (2010) Preparation of supermacroporous composite cryogel embedded with SiO2 nanoparticles. Biotechnol Bioeng Chin J Chem Eng 18:667–671Google Scholar
  75. 75.
    Hajizadeh S, Kirsebom H, Leistner A, Mattiasson B (2012) Composite cryogel with immobilized concanavalin A for affinity chromatography of glycoproteins. J Sept Sci 25:2978–2985Google Scholar
  76. 76.
    Savina IN, English CJ, Whitby RLD, Zheng Y, Leistner A, Mikhalosky SV, Cundy AB (2011) High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. J Hazard Mater 192:1002–1008Google Scholar
  77. 77.
    Sun S, Tang Y, Fu Q, Liu X, Guo L, Zhao Y, Chang C (2012) Monolithic cryogel made of agarose-chitosan composite and loaded with agarose beads for purification of immunoglobulin G. Int J Biol Macromol 50:1002–1007Google Scholar
  78. 78.
    Hajizadeh S, Kirsebom H, Mattiasson B (2010) Characterization of macroporous carbon-structured particle gel as adsorbent for small organic molecules. Soft Matter 6:5562–5569Google Scholar
  79. 79.
    Komarova GA, Starodubtsev SG, Lozinsky VI, Kalinina EV, Landfester K, Kokhlov AR (2008) Intelligent gels and cryogels with entrapped emulsions. Langmuir 24:4467–4469Google Scholar
  80. 80.
    Podorozhko EA, Korlyukov AA, Lozinsky VI (2010) Cryostructuring of polymer systems, XXX. Poly(vinyl alcohol)-based composite cryogels filled with small disperse oil droplets: a gel system capable of mechanically induced releasing of lipophilic constituents. J Appl Polym Sci 117:1332–1349Google Scholar
  81. 81.
    Plieva FM, Ekström P, Galaev IY, Mattiasson B (2008) Monolithic cryogels with open porous structure and unique double-continuous macroporous networks. Soft Matter 4:2418–2428Google Scholar
  82. 82.
    Akduman B, Uygun M, Uygun DA, Akgöl S, Denizli A (2013) Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels. Mat Sci Eng C 33:4842–4848Google Scholar
  83. 83.
    Yilmaz F, Bereli N, Yavuz H, Denizli A (2009) Supermacropoorous hydrophobic affinity cryogels for protein chromatography. Biochem Eng J 43:272–279Google Scholar
  84. 84.
    Demiryas N, Tüzmen N, Galaev IY, Piskin E, Denizli A (2007) Poly(acrylamide-allyl glycidyl ether) cryogel as a novel stationary phase in dye-affinity chromatography. J Appl Polym Sci 105:1808–1816Google Scholar
  85. 85.
    Alkan H, Bereli N, Baysal Z, Denizli A (2009) Antibody purification with protein A attached to supermacroporous poly(hydroxyethyl methacrylate) cryogel. Biochem Eng J 45:207–208Google Scholar
  86. 86.
    Bakhshpour M, Bereli N, Senel S (2014) Preparation and characterization of thiophilic cryogels with 2-mercapto ethanol as a ligand for IgG purification. Colloid Surface B 113:261–268Google Scholar
  87. 87.
    Duygu C, Denizli A (2012) Immobilized metal affinity monolithic cryogels for cytochrome c purification. Colloid Surf C 93:29–35Google Scholar
  88. 88.
    Percin I, Aksöz E, Denizli A (2013) Gelatin-immobilized poly(hydroxyethyl methacrylate) cryogel for affinity purification of fibronectin. Appl Biochem Biotechnol 171:352–365Google Scholar
  89. 89.
    Uygun DA, Akduman B, Uygun M, Akgöl S, Denizli A (2012) Purification of papain using reactive green 5 attached supermacroporous monolithic cryogel. Appl Biochem Biotechnol 167:552–563Google Scholar
  90. 90.
    Arvidsson P, Plieva FM, Lozinsky VI, Galaev IY, Mattiasson B (2003) Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. J Chromatogr A 986:275–290Google Scholar
  91. 91.
    Billacanti JM, Fee CJ (2009) Characterization of cryogel monoliths for extraction of minor proteins from milk by cation exchange. Biotechnol Bioeng 103:1155–1163Google Scholar
  92. 92.
    Hanora A, Plieva FM, Hedström M, Galaev IY, Mattiasson B (2005) Capture of bacterial endotoxins using a supermacroporous monolithic matrix with immobilized polyethyleneimine, lysozyme or polymyxin B. J Biotechnol 118:421–433Google Scholar
  93. 93.
    Deraz S, Plieva FM, Galaev IY, Karlsson EN, Mattiasson B (2007) Capture of bacteriocins directly from non-clarified fermentation broth using macroporous monolithic cryogels with phenyl ligands. Enzyme Microb Technol 40:786–793Google Scholar
  94. 94.
    Galaev IY, Dainiak MB, Plieva FM, Hatti-Kaul R, Mattiasson B (2005) High throughput processing of particulate-containing samples using supermacroporous elastic monoliths in microtitre (multiwall) plate format. J Chromatogr A 1065:169–175Google Scholar
  95. 95.
    Dainiak MB, Galaev IY, Mattiasson B (2006) Affinity cryogel monoliths for screening for optimal separation conditions and chromatographic separation of cells. J Chromatogr A 1123:145–150Google Scholar
  96. 96.
    Dainiak MB, Galaev IY, Mattiasson B (2007) Macroporous monolithic hydrogels in a 96-minicolumn plate format for cell surface analysis and integrated binding/quantification of cells. Enzyme Microb Technol 40:688–695Google Scholar
  97. 97.
    Plieva FM, Mattiasson B (2008) Macroporous gel particles as novel sorbent materials: rational design. Ind Eng Chem Res 47:4131–4141Google Scholar
  98. 98.
    Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647Google Scholar
  99. 99.
    Mosbach K (1994) Molecular imprinting. Trends Biochem Sci 19:9–14Google Scholar
  100. 100.
    Andac M, Baydemir G, Yavuz H, Denizli A (2012) Molecularly imprinted composite cryogel for albumin depletion from human serum. J Mol Recognit 25:555–563Google Scholar
  101. 101.
    Baydemir G, Bereli N, Andac M, Say R, Galaev IY, Denizli A (2009) Supermacroporous poly(hydroxyethyl methacrylate) based cryogel with embedded bilirubin imprinted particles. React Funct Polym 69:36–42Google Scholar
  102. 102.
    Baydemir G, Bereli N, Andac M, Say R, Galaev IY, Denizli A (2009) Bilirubin recognition via molecularly imprinted supermacroporous cryogels. Colloid Surf 68:33–38Google Scholar
  103. 103.
    Bereli N, Andac M, Beydemir G, Say R, Galaev IY, Denizli A (2008) Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. J Chromatogr A 1190:18–26Google Scholar
  104. 104.
    Ergün B, Daydemir G, Andac M, Yavuz H, Denizli A (2012) Ion imprinted beads embedded cryogels for in vitro removal of iron from β-thalassemic human plasma. J Appl Polym Sci 125:254–262Google Scholar
  105. 105.
    Tamahkar E, Bereli N, Say R, Denizli A (2011) Molecularly imprinted supermacroporous cryogels for cytochrome c recognition. J Sept Sci 34:3433–3440Google Scholar
  106. 106.
    Tekin K, Uzun L, Sahin CA, Bektas S, Denizli A (2011) Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal. React Funct Polym 71:985–993Google Scholar
  107. 107.
    Hajizadeh S, Changgang X, Kirsebom H, Ye L, Mattiasson B (2013) Cryogelation of molecularly imprinted nanoparticles: A macroporous structure as affinity chromatography column for removal of β-blockers from complex samples. J Chromatogr A 1272:6–12Google Scholar
  108. 108.
    Tan CJ, Chua HG, Ker KH, Tong YW (2008) Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Anal Chem 80:683–692Google Scholar
  109. 109.
    Önnby L, Georgi C, Plieva FM, Mattiasson B (2010) Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels. Biotechnol Prog 26:1295–1302Google Scholar
  110. 110.
    Le Noir M, Plieva FM, Hey T, Guieysse B, Mattiasson B (2007) Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. J Chromatogr A 1154:158–164Google Scholar
  111. 111.
    Le Noir M, Lepeuple A-S, Guieysse B, Mattiasson B (2007) Selective removal of 17 β-estradiol at trace concentrations using a molecularly imprinted polymer. Water Res 41:2825–2831Google Scholar
  112. 112.
    Le Noir M, Plieva FM, Mattiasson B (2009) Removal of endocrine disrupting compounds from water using macroporous molecular imprinted cryogels in a moving bed reactor. J Sept Sci 32:1471–1479Google Scholar
  113. 113.
    Gaido KW, Leonard LS, Lovell S, Gold JC, Babal D, Protier CJ, McDonnell DP (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of BiotechnologyLund UniversityLundSweden
  2. 2.Indienz AB, c/o Department of ChemistryLund UniversityLundSweden

Personalised recommendations