Advertisement

Inorganic Cryogels

  • Oleg A. ShlyakhtinEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 263)

Abstract

Recent advances in the application of cryogels in the synthesis and processing of inorganic as well as carbon-based materials are briefly summarized. Synthesis of complex oxides by using polymeric cryogels causes a substantial reduction in phase formation temperature and thus promotes a significant decrease in grain size. Freeze-drying of co-precipitated gels and residues prevents the agglomeration of nanocrystallites usually observed during atmospheric drying. This feature is also widely used for the isolation of nanoparticles prepared by various wet chemical methods. Ceramic materials with oriented tubular pores and mesoporous pore walls can be obtained by using directed crystallization of ice from ceramic slurries. Carbon cryogels with a specific surface area of up to 2,000 m2 g−1 can be prepared by thermal processing of the corresponding polymeric precursors. Cryogel-derived composites of carbon nanotubes and graphene-based materials with various oxides demonstrate outstanding mechanical properties and enhanced electrical conductivity.

Keywords

Freeze-drying synthesis Co-precipitation Nanoparticle isolation Oriented porosity Carbon cryogel 

Abbreviations

CNT

Carbon nanotubes

FESEM

Field emission SEM

GO

Graphene oxide

HAP

Hydroxyapatite

RGO

Reduced graphene oxide

RF

Resorcinol-formaldehyde

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

Notes

Acknowledgements

Partial support by the Russian Foundation for Basic Research (grant 12-08-01241a) is gratefully acknowledged.

References

  1. 1.
    Klvana D, Chaouki J, Repellin-Lacroix M, Pajonk GM (1989) Rev Phys Appl Colloid 4:C4–29Google Scholar
  2. 2.
    Pajonk GM (1989) Rev Phys Appl Colloid 4:C4–13Google Scholar
  3. 3.
    Pajonk GM, Repellin-Lacroix M, Abournadasse S, Chaouki J, Klvana D (1990) J Non-Cryst Solids 121:66Google Scholar
  4. 4.
    Scheurell K, Hoppe E, Brzezinka KW, Kemnitz E (2004) J Mater Chem 14:2560Google Scholar
  5. 5.
    Borlaf M, Poveda JM, Moreno R, Colomer MT (2012) J Sol-Gel Sci Technol 63:408Google Scholar
  6. 6.
    Shu K, Wang C, Wang M, Zhao C, Wallace GC (2014) J Mater Chem A 2:1325Google Scholar
  7. 7.
    Trambouze Y (1969) Ann Bull Inst Intern du Froid 9:13Google Scholar
  8. 8.
    Trambouze Y (1970) Chimie & Industrie Genie Chimique 103:2338Google Scholar
  9. 9.
    Roehrig FK, Wright TR (1972) J Am Ceram Soc 55:58Google Scholar
  10. 10.
    Landsberg A, Campbell TT (1965) J Metals 17:856Google Scholar
  11. 11.
    Wikipedia (2014) Deng_Xiaoping_theory. Wikipedia, The free encyclopedia. Available at http://en.wikipedia.org/wiki/Deng_Xiaoping_Theory
  12. 12.
    Tretyakov YD, Oleynikov NN, Shlyakhtin OA (1997) Cryochemical technology of advanced materials. Chapman Hall, LondonGoogle Scholar
  13. 13.
    Tretyakov YD, Shlyakhtin OA (1999) J Mater Chem 9:19Google Scholar
  14. 14.
    Shlyakhtin OA, Oleinikov NN, Tretyakov YD (2005) Cryochemical synthesis of materials. In: Komarneni S, Lee B (eds) Chemical processing of ceramics (2nd edn), vol 28, Materials engineering series. CRC, Boca Raton, p 77Google Scholar
  15. 15.
    Shlyakhtin OA, Oh YJ (2009) J Electroceramics 23:452Google Scholar
  16. 16.
    Rusnano (2011) Pechini method. In: Glossary of nanotechnology and related terms. Available at http://eng.thesaurus.rusnano.com/wiki/article2075
  17. 17.
    Petrykin V, Kakihana M (2005) Chemistry and applications of polymeric gel precursors. In: Sakka S, Kozuka H (eds) Handbook of sol-gel science and technology, vol 1. Kluwer, Dordrecht, p 77Google Scholar
  18. 18.
    Junliang L, Yanwei Z, Cuijing G, Wei Z, Xiaowei Y (2010) J Eur Ceram Soc 30:993Google Scholar
  19. 19.
    Jing Y, Patakangas J, Lund PD, Zhu B (2013) Int J Hydrogen Energy 38:16532Google Scholar
  20. 20.
    Fujioka Y, Frantti J, Asiri AM, Obaid AY, Jiang H, Nieminen RM (2012) J Phys Chem C 116:17029Google Scholar
  21. 21.
    Tezuka S, Sato Y, Komukai T, Takatsuka Y, Kato H, Kakihana M (2013) Appl Phys Express 6:072101Google Scholar
  22. 22.
    Iwamura M, Petrykin V, Kakihana M (2007) J Ceram Soc Japan 115:920Google Scholar
  23. 23.
    Wang X, Sumboja A, Khoo E, Yan C, Lee PS (2012) J Phys Chem C 116:4930Google Scholar
  24. 24.
    Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W (2012) J Am Ceram Soc 95:1544Google Scholar
  25. 25.
    Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W (2013) Front Chem Sci Eng 7:297Google Scholar
  26. 26.
    Wang R, Crozier PA, Sharma R, Adams JB (2006) J Phys Chem B 110:18278Google Scholar
  27. 27.
    Lee S, Kim HJ, Choi SM, Seo MH, Kim WB (2012) Appl Catal A 429–430:39Google Scholar
  28. 28.
    Panova TI, Glushkova VB, Lapshin AE (2008) Glass Phys Chem 34:206Google Scholar
  29. 29.
    Yang H, Nie S (2009) Mater Chem Phys 114:279Google Scholar
  30. 30.
    Kirit S, Dimple S (2012) J Cryst Growth 352:224Google Scholar
  31. 31.
    Vanea E, Simon V (2013) Appl Surf Sci 280:144Google Scholar
  32. 32.
    Naci Koc S, Oksuzomer F, Yasar E, Akturk S, Gurkaynak MA (2006) Mater Res Bull 41:2291Google Scholar
  33. 33.
    Chesnaud A, Bogicevic C, Karolak F, Estournes C, Dezanneau G (2007) Chem Commun 2007(15):1550Google Scholar
  34. 34.
    Mionic M, Alexander DTL, Forro L, Magrez A (2008) Phys Stat Sol 245:1915Google Scholar
  35. 35.
    Moriyama D, Hirata Y, Sameshima S, Matsunaga N, Doi T, Kashima N, Nagaya S (2009) J Ceram Soc Japan 117:635Google Scholar
  36. 36.
    Shiratani K, Hirata Y, Sameshima S, Matsunaga N, Nakahara S (2011) Ceram Intern 37:1525Google Scholar
  37. 37.
    Chao C, Ren Z, Liu Z, Xiao Z, Xu G, Li X, Wei X, Shen G, Han G (2011) Appl Surf Sci 257:9768Google Scholar
  38. 38.
    Shlyakhtin OA, Skundin AM, Yoon SJ, Oh YJ (2009) Mater Lett 63:109Google Scholar
  39. 39.
    Shlyakhtin OA, Mazo GN, Malyshev SA, Kolchina LN, Knot’ko AV, Loktev AS, Dedov AG (2013) Mater Res Bull 48:245Google Scholar
  40. 40.
    Harelind H, Gunnarsson F, Vaghefi SMS, Skoglundh M, Carlsson PA (2012) ACS Catal 2:1615Google Scholar
  41. 41.
    Kannisto H, Arve K, Pingel T, Hellman A, Harelind H, Eranen K, Olsson E, Skoglundh M, Murzin DY (2013) Catal Sci Technol 3:644Google Scholar
  42. 42.
    Gunnarsson F, Zheng JY, Kannisto H, Cid C, Lindholm A, Milh M, Skoglundh M, Harelind H (2013) Top Catal 56:416Google Scholar
  43. 43.
    Kirchhoff M, Specht U, Veser G (2005) Nanotechnology 16:S401Google Scholar
  44. 44.
    Osaki T, Shima S, Miki T, Tai Y (2012) Catal Lett 142:541Google Scholar
  45. 45.
    Osaki T, Yamada K, Watari K, Tajiri K, Shima S, Miki T, Tai Y (2012) Catal Lett 142:95Google Scholar
  46. 46.
    Kim HJ, Choi SM, Nam SH, Seo MH, Kim WB (2009) Catal Today 146:9Google Scholar
  47. 47.
    Kim HJ, Choi SM, Nam SH, Seo MH, Kim WB (2009) Appl Catal A 352:145Google Scholar
  48. 48.
    Choi JH, Park KW, Park IS, Kim K, Lee JS, Sung YE (2006) J Electrochem Soc 153:A1812Google Scholar
  49. 49.
    Jalota S, Bhaduri SB, Cuneyt Tas A (2007) J Biomed Mater Res B 80:304Google Scholar
  50. 50.
    Osaki T, Nagashima K, Watari K, Tajiri K (2007) J Non-Cryst Solids 353:2436Google Scholar
  51. 51.
    Wang X, Ma Y, Li S, Zhu B, Muhammed M (2012) Int J Hydrogen Energy 37:19380Google Scholar
  52. 52.
    Han C, Ma Y, Pei C (2013) J Non-Cryst Solids 369:5Google Scholar
  53. 53.
    Jimeno C, Miras J, Esquena J (2013) Catal Lett 143:616Google Scholar
  54. 54.
    Cao YC (2012) J Colloid Interface Sci 368:139Google Scholar
  55. 55.
    Ko HH, Chen HT, Yen FL, Lu WC, Kuo CW, Wang MC (2012) Int J Mol Sci 13:1658Google Scholar
  56. 56.
    Shlyakhtin OA, Oh YJ (2006) J Am Ceram Soc 89:3366Google Scholar
  57. 57.
    Shlyakhtin OA, Oh YJ (2009) Int J Appl Ceram Technol 6:312Google Scholar
  58. 58.
    Gong H, Tang DY, Huang H (2009) J Am Ceram Soc 92:812Google Scholar
  59. 59.
    Gong H, Zhang J, Tang DY, Xie GQ, Huang H, Ma J (2011) J Nanopart Res 13:3853Google Scholar
  60. 60.
    Suarez M, Fernandez A, Menendez JL, Nygren M, Torrecillas R, Zhao Z (2010) J Eur Ceram Soc 30:1489Google Scholar
  61. 61.
    Shlyakhtin OA, Yoon YS, Choi SH, Oh YJ (2004) Electrochim Acta 50:505Google Scholar
  62. 62.
    Shlyakhtin OA, Choi SH, Yoon YS, Oh YJ (2005) J Power Sources 141:122Google Scholar
  63. 63.
    Jain G, Yang J, Balasubramanian M, Xu JJ (2005) Chem Mater 17:3850Google Scholar
  64. 64.
    Qi L, Fresnais J, Muller P, Theodoly O, Berret JF, Chapel JP (2012) Langmuir 28:11448Google Scholar
  65. 65.
    Li Y, Yao J, Uchaker E, Yang J, Huang Y, Zhang M, Cao G (2013) Adv Energy Mater 3:1171Google Scholar
  66. 66.
    Bianchi CL, Ardizzone S, Cappelletti G (2004) Surf Interface Anal 36:745Google Scholar
  67. 67.
    Hessien M, Leґone P, Suchaud M, LeBeau B, Nouali H, Guari Y, Prouzet E (2012) Chem Commun 48:10022Google Scholar
  68. 68.
    Su LF, Miao L, Tanemura S, Xu G (2012) Sci Technol Adv Mater 13:035003Google Scholar
  69. 69.
    Prokopowicz M (2010) J Sol Gel Sci Technol 53:525Google Scholar
  70. 70.
    Lu P, Hsieh YL (2012) Powder Technol 225:149Google Scholar
  71. 71.
    Hashkovsky SV, Shilova OA, Kuznetsova LA (2005) Glass Phys Chem 31:352Google Scholar
  72. 72.
    Chen R, Luo Y, Sun J, Li G (2012) Propellants Explos Pyrotech 37:422Google Scholar
  73. 73.
    Kuechl DE, Benin AI, Knight LM, Abrevaya H, Wilson ST, Sinkler W, Mezza TM, Willis RR (2010) Micropor Mesopor Mater 127:104Google Scholar
  74. 74.
    Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK (2008) Ceram Intern 34:2059Google Scholar
  75. 75.
    Sinko K (2013) Mater Lett 107:344Google Scholar
  76. 76.
    Osaki T, Yamada K, Watari K, Tajiri K, Shima S, Miki T, Tai Y (2012) J Sol Gel Sci Technol 61:268Google Scholar
  77. 77.
    Fazio S, Guzm’an J, Colomer MT, Salomoni A, Moreno R (2008) J Eur Ceram Soc 28:2171Google Scholar
  78. 78.
    Wang S, Mei Y, Li X, Tan T (2012) Mater Lett 74:1Google Scholar
  79. 79.
    Liu L, Isobe T, Ling H, Okada K, Nakajima A (2011) Mater Res Bull 46:175Google Scholar
  80. 80.
    Yamamoto N, Isobe T, Matsushita S, Nakajima A (2012) J Ceram Soc Japan 120:483Google Scholar
  81. 81.
    Jiang PJ, Wynn-Jones G, Grover LM (2010) J Mater Sci 45:5257Google Scholar
  82. 82.
    Girija EK, Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S (2012) Powder Technol 225:190Google Scholar
  83. 83.
    Kawashita M, Matsui N, Li Z, Miyazaki T, Kanetaka H (2011) J Biomed Mater Res B 99:45Google Scholar
  84. 84.
    Khlebtsov BN, Khanadeev VA, Panfilova EV, Pylaev TE, Bibikova OA, Staroverov SA, Bogatyrev VA, Dykman LA, Khlebtsov NG (2013) Nanotech Russia 8:209Google Scholar
  85. 85.
    Khlebtsov BN, Panfilova EV, Terentyuk GS, Maksimova IL, Ivanov AV, Khlebtsov NG (2012) Langmuir 28:8994Google Scholar
  86. 86.
    Xie J, Lee JY, Wang DIC (2007) Chem Mater 19:2823Google Scholar
  87. 87.
    Jung HS, Shin H, Kim JR, Kim JY, Hong KS, Lee JK (2004) Langmuir 20:11732Google Scholar
  88. 88.
    Shin H, Jung HS, Hong KS, Lee JK (2005) J Solid State Chem 178:15Google Scholar
  89. 89.
    Chiavacci LA, Santilli CV, Pulcinelli SH, Bourgaux C, Briois V (2004) Chem Mater 16:3995Google Scholar
  90. 90.
    Kaluza S, Muhler M (2009) Catal Lett 129:287Google Scholar
  91. 91.
    Sanchez-Enriquez J, Reyes-Gasga J (2013) Ultrasonics Sonochem 20:1948Google Scholar
  92. 92.
    Kim S, Ryu HS, Shin H, Jung HS, Hong KS (2005) Mater Chem Phys 91:500Google Scholar
  93. 93.
    Millot N, Xin B, Pighini C, Aymes D (2005) J Eur Ceram Soc 25:2013Google Scholar
  94. 94.
    Kim SJ, Lee K, Kim JH, Lee NH, Kim SJ (2006) Mater Lett 60:364Google Scholar
  95. 95.
    Yang H, Ouyang J, Tang A (2007) J Phys Chem B 111:8006Google Scholar
  96. 96.
    Boldrin P, Hebb AK, Chaudhry AA, Otley L, Thiebaut B, Bishop P, Darr JA (2007) Ind Eng Chem Res 46:4830Google Scholar
  97. 97.
    Nalbandian L, Delimitis A, Zaspalis VT, Deliyanni EA, Bakoyannakis DN, Peleka EN (2008) Micropor Mesopor Mater 114:465Google Scholar
  98. 98.
    Zhang Z, Brown S, Goodall JBM, Weng X, Thompson K, Gonga K, Kellici S, Clark RJH, Evans JRG, Darr JA (2009) J Alloys Compd 476:451Google Scholar
  99. 99.
    Kim SJ, Yun YU, Oh HJ, Hong SH, Roberts CA, Routray K, Wachs IE (2010) J Phys Chem Lett 1:130Google Scholar
  100. 100.
    Szepesi CJ, Cantonnet J, Allen Kimel R, Adair JH (2011) J Am Ceram Soc 94:4200Google Scholar
  101. 101.
    Long Y, Hui J, Wang P, Hu S, Xu B, Xiang G, Zhuang J, Lu X, Wang X (2012) Chem Commun 48:5925Google Scholar
  102. 102.
    Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) J Magn Magn Mater 289:439Google Scholar
  103. 103.
    Frandsen C, Morup S (2006) J Phys Condens Matter 18:7079Google Scholar
  104. 104.
    Arelaro AD, Brandl AL, Lima E, Gamarra LF, Brito GES, Pontuschka WM, Goya GF (2006) J Appl Phys 97:10J316Google Scholar
  105. 105.
    Ludwig F, Heim E, Menzel D, Schilling M (2006) J Appl Phys 99:08P106Google Scholar
  106. 106.
    Ludwig F, Heim E, Schilling M (2007) J Appl Phys 101:113909Google Scholar
  107. 107.
    Ludwig F, Heim E, Schilling M (2009) J Magn Magn Mater 321:1644Google Scholar
  108. 108.
    Schmidl F, Weber P, Koettig T, Buttner M, Prass S, Becker C, Mans M, Heinrich J, Roder M, Wagner K, Berkov DV, Goernert P, Glockl G, Weitschies W, Seidel P (2007) J Magn Magn Mater 311:171Google Scholar
  109. 109.
    Candelario VM, Guiberteau F, Moreno R, Ortiz AL (2013) J Eur Ceram Soc 33:2473Google Scholar
  110. 110.
    Chubilleau C, Lenoir B, Masschelein P, Dauscher A, Candolfi C, Guilmeau E, Godart C (2013) J Mater Sci 48:2761Google Scholar
  111. 111.
    Teagarden DL, Baker DS (2002) Eur J Pharm Sci 15:115Google Scholar
  112. 112.
    Schaefer J, Rasmussen DH, Partch R (2013) Drying Technol 31:856Google Scholar
  113. 113.
    Deqiong Z, Shuming P, Xiaojun C, Xiaoling G, Tongzai Y (2010) J Nucl Mater 396:245Google Scholar
  114. 114.
    Jerndal E, Mattisson T, Lyngfelt A (2009) Energ Fuels 23:665Google Scholar
  115. 115.
    Garcia E, Mesquita-Guimaraes J, Miranzo P, Osendi MI (2011) Surf Coat Technol 205:4304Google Scholar
  116. 116.
    Vicent M, Sanchez E, Molina T, Nieto I, Moreno R (2012) J Eur Ceram Soc 32:1019Google Scholar
  117. 117.
    Olhero SM, Ganesh I, Torres PMC, Alves FJ, Ferreira JMF (2009) J Am Ceram Soc 92:9Google Scholar
  118. 118.
    Mavrodinova V, Popova M, Valchev V, Nickolov R, Minchev C (2005) J Colloid Interface Sci 286:268Google Scholar
  119. 119.
    Yao D, Xia Y, Zeng Y, Zuo K, Jiang D (2012) Mater Lett 68:75Google Scholar
  120. 120.
    Wu H, Li D, Tang Y, Sun B, Xu D (2009) J Mater Proc Technol 18–19:5886Google Scholar
  121. 121.
    Roy S, Wanner A (2008) Compos Sci Technol 68:1136Google Scholar
  122. 122.
    Tallon C, Jach D, Moreno R, Isabel Nieto M, Rokicki G, Szafran M (2009) J Eur Ceram Soc 29:875Google Scholar
  123. 123.
    Zuo KH, Zeng Y, Jiang D (2008) Int J Appl Ceram Technol 5:198Google Scholar
  124. 124.
    Zou J, Zhang Y, Li R (2011) Int J Appl Ceram Technol 8:482Google Scholar
  125. 125.
    Zuo KH, Zeng YP, Jiang D (2013) Adv Eng Mater 15:490Google Scholar
  126. 126.
    Grimm S, Lange A, Enke D, Steinhart M (2012) J Mater Chem 22:9490Google Scholar
  127. 127.
    Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P (2013) J Eur Ceram Soc 33:3243Google Scholar
  128. 128.
    de Hazan Y (2012) J Am Ceram Soc 95:177Google Scholar
  129. 129.
    Ren L, Zeng Y, Jiang D (2009) Ceram Intern 35:1267Google Scholar
  130. 130.
    Depan D, Kumar AP, Singh RP (2009) Acta Biomat 5:93Google Scholar
  131. 131.
    Landi E, Valentini F, Tampieri A (2008) Acta Biomat 4:1620Google Scholar
  132. 132.
    Monmaturapoj N, Soodsawang W, Thepsuwan W (2012) J Porous Mater 19:441Google Scholar
  133. 133.
    Zuo KH, Zhang Y, Zeng YP, Jiang D (2011) Ceram Intern 37:407Google Scholar
  134. 134.
    Sinha A, Guha A (2009) Mater Sci Eng C 29:1330Google Scholar
  135. 135.
    Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) J Compos Mater 42:2629Google Scholar
  136. 136.
    Jelic TA, Bronic J, Hadzija M, Subotic B, Maric I (2007) Micropor Mesopor Mater 105:65Google Scholar
  137. 137.
    Koch D, Andresen L, Schmedders T, Grathwohl G (2003) J Sol-Gel Sci Technol 26:149Google Scholar
  138. 138.
    Koch D, Soltmann C, Grathwohl G (2007) Key Eng Mater 336–338:1683Google Scholar
  139. 139.
    Ding S, Zeng YP, Jiang D (2007) J Am Ceram Soc 90:2276Google Scholar
  140. 140.
    Moritz T, Richter HJ (2006) J Am Ceram Soc 89:2394Google Scholar
  141. 141.
    Moritz T, Richter HJ (2007) J Eur Ceram Soc 27:4595Google Scholar
  142. 142.
    Lu K, Kessler CS, Davis RM (2006) J Am Ceram Soc 89:2459Google Scholar
  143. 143.
    Lu K (2007) J Am Ceram Soc 90:3753Google Scholar
  144. 144.
    Cho YK, Yang TY, Lee JM, Yoon SY, Stevens R, Park HC (2008) J Phys Chem Solids 69:1525Google Scholar
  145. 145.
    Gannon P, Sofie S, Deibert M, Smith R, Gorokhovsky V (2009) J Appl Electrochem 39:497Google Scholar
  146. 146.
    Zhang R, Fang D, Pei Y, Zhou L (2012) Ceram Intern 38:4373Google Scholar
  147. 147.
    Hu L, Zhang Y, Zhan S, Zhou Y (2012) Mater Lett 82:152Google Scholar
  148. 148.
    Mukai SR, Nishihara H, Tamon H (2003) Micropor Mesopor Mater 63:43Google Scholar
  149. 149.
    Mukai SR, Nishihara H, Tamon H (2004) Chem Commun 2004(7):874Google Scholar
  150. 150.
    Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Chem Mater 17:683Google Scholar
  151. 151.
    Zhang H, Cooper AI (2007) Adv Mater 19:1529Google Scholar
  152. 152.
    Deville S (2008) Adv Eng Mater 10:155Google Scholar
  153. 153.
    Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C (2009) Nat Mater 9:966Google Scholar
  154. 154.
    Munch E, Saiz E, Tomsia AP, Deville S (2009) J Am Ceram Soc 92:1534Google Scholar
  155. 155.
    Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C (2010) J Am Ceram Soc 93:2507Google Scholar
  156. 156.
    Lasalle A, Guizard C, Deville S, Rossignol F, Carles P (2011) J Am Ceram Soc 94:244Google Scholar
  157. 157.
    Olevsky EA, Wang X, Bruce E, Stern MB, Wildhack S, Aldinger F (2007) Scripta Mater 56:867Google Scholar
  158. 158.
    Lee SH, Jun SH, Kim HE, Koh YH (2008) J Am Ceram Soc 91:1912Google Scholar
  159. 159.
    Mukai SR, Nishihara H, Tamon H (2008) Micropor Mesopor Mater 116:166Google Scholar
  160. 160.
    Nishihara H, Iwamura S, Kyotani T (2008) J Mater Chem 18:3662Google Scholar
  161. 161.
    Chino Y, Dunand DC (2008) Acta Mater 56:105Google Scholar
  162. 162.
    Fukushima M, Nakata M, Zhou Y, Ohji T, Yoshizawa Y (2010) J Eur Ceram Soc 14:2889Google Scholar
  163. 163.
    Nishihara H, Mukai SR, Shichi S, Tamon H (2010) Mater Lett 64:959Google Scholar
  164. 164.
    Mukai SR, Onodera K, Yamada I (2011) Adsorption 17:49Google Scholar
  165. 165.
    Oh S, Chang S, Suk M (2012) Trans Nonferrous Met Soc China 22:s688Google Scholar
  166. 166.
    Fukushima M (2013) J Ceram Soc Japan 121:182Google Scholar
  167. 167.
    Tamon H, Akatsuka T, Mori H, Sano N (2013) Chem Eng Trans 32:2059Google Scholar
  168. 168.
    Khaleghi E, Olevsky E, Meyers M (2009) J Am Ceram Soc 92:1487Google Scholar
  169. 169.
    Yoon HJ, Kim UC, Kim JH, Koh YH (2010) J Am Ceram Soc 93:1580Google Scholar
  170. 170.
    Zheng J, Salamon D, Lefferts L, Wessling M, Winnubst L (2010) Micropor Mesopor Mater 134:216Google Scholar
  171. 171.
    Hu L, Wang C, Huang Y, Sun C, Lu S, Hu Z (2010) J Eur Ceram Soc 30:3389Google Scholar
  172. 172.
    Deng ZY, Fernandes HR, Ventura JM, Kannan S, Ferreira JMF (2007) J Am Ceram Soc 90:1265Google Scholar
  173. 173.
    He Y, Zhang N, Gong Q, Li Z, Gao J, Xiu H (2012) Mater Chem Phys 134:585Google Scholar
  174. 174.
    Fu Q, Rahaman MN, Dogan F, Sonny Bal B (2008) J Biomed Mater Res B 86:125Google Scholar
  175. 175.
    Fu Q, Rahaman MN, Dogan F, Sonny Bal B (2008) J Biomed Mater Res B 86:514Google Scholar
  176. 176.
    Fu Q, Rahaman MN, Dogan F, Sonny Bal B (2008) Biomed Mater 3:025005Google Scholar
  177. 177.
    Rahaman MN, Fu Q (2008) J Am Ceram Soc 91:4137Google Scholar
  178. 178.
    Zuo KH, Zeng Y, Jiang D (2010) Mater Design 31:3090Google Scholar
  179. 179.
    Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Science 311:515Google Scholar
  180. 180.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Science 322:1516Google Scholar
  181. 181.
    Tamon H, Ishizaka H (1999) Drying Technol 17:1653Google Scholar
  182. 182.
    Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Carbon 37:2049Google Scholar
  183. 183.
    Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Carbon 38:1099Google Scholar
  184. 184.
    Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Celzard A (2011) Sci Technol Adv Mater 12:035001Google Scholar
  185. 185.
    Czakkel O, Marthi K, Geissler E, Laszlo K (2005) Micropor Mesopor Mater 86:124Google Scholar
  186. 186.
    Feaver A, Cao G (2006) Carbon 44:590Google Scholar
  187. 187.
    Alvares Rodrigues L, Parmentier J, Parra JB, Thim GP (2013) J Sol Gel Sci Technol 67:519Google Scholar
  188. 188.
    Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2007) Micropor Mesopor Mater 98:258Google Scholar
  189. 189.
    Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2008) J Porous Mater 15:695Google Scholar
  190. 190.
    Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2008) Micropor Mesopor Mater 115:432Google Scholar
  191. 191.
    Amaral-Labat G, Szczurek A, Fierro V, Stein N, Boulanger C, Pizzi A, Celzard A (2012) Biomass Bioenerg 39:274Google Scholar
  192. 192.
    Arbizzani C, Beninati S, Manferrari E, Soavi F, Mastragostino M (2006) J Power Sources 161:826Google Scholar
  193. 193.
    Arbizzani C, Beninati S, Soavi F, Varzi A, Mastragostino M (2008) J Power Sources 185:615Google Scholar
  194. 194.
    Babic VM, Vracar LM, Radmilovic V, Krstajic NV (2006) Electrochim Acta 51:3820Google Scholar
  195. 195.
    Elezovic NR, Babic BM, Krstajic NV, Gajic-Krstajic LM, Vracar LM (2007) Int J Hydrogen Energ 32:1991Google Scholar
  196. 196.
    Babic VM, Kaluderovic BV, Vracar LM, Radmilovic V, Krstajic NV (2007) J Serb Chem Soc 72:773Google Scholar
  197. 197.
    Horikawa T, Sekida T, Hayashi J, Katoh M, Do DD (2011) Carbon 49:416Google Scholar
  198. 198.
    Yamamoto T, Kataoka S, Ohmori T (2010) J Hazard Mater 177:331Google Scholar
  199. 199.
    Kim SI, Yamamoto T, Endo A, Ohmori T, Nakaiwa M (2006) Micropor Mesopor Mater 96:191Google Scholar
  200. 200.
    Garcia BB, Feaver AM, Zhang Q, Champion RD, Cao G, Fister TT, Nagle KP, Seidler GT (2008) J Appl Phys 104:014305Google Scholar
  201. 201.
    Garcia BB, Candelaria SL, Liu D, Sepheri S, Cruz JA, Cao G (2011) Renew Energ 36:1788Google Scholar
  202. 202.
    Arbizzani C, Beninati S, Lazzari M, Soavi F, Mastragostino M (2007) J Power Sources 174:648Google Scholar
  203. 203.
    Candelaria SL, Garcia BB, Liu D, Cao G (2012) J Mater Chem 22:9884Google Scholar
  204. 204.
    Candelaria SL, Chen R, Jeong YH, Cao G (2012) Energy Environ Sci 5:5619Google Scholar
  205. 205.
    Song MS, Nahm S, Oh YJ (2008) J Kor Ceram Soc 45:662Google Scholar
  206. 206.
    Kraiwattanawong K, Sano N, Tamon H (2013) Micropor Mesopor Mater 165:228Google Scholar
  207. 207.
    Pan A, Liu D, Zhou X, Garcia BB, Liang S, Liu J, Cao G (2010) J Power Sources 195:3893Google Scholar
  208. 208.
    Zhang M, Li Y, Uchaker E, Candelaria S, Shen L, Wang T, Cao G (2013) Nano Energ 2:769Google Scholar
  209. 209.
    Kraiwattanawong K, Sano N, Tamon H (2011) Carbon 49:3404Google Scholar
  210. 210.
    Kraiwattanawong K, Sano N, Tamon H (2012) Micropor Mesopor Mater 153:47Google Scholar
  211. 211.
    Babic B, Kokunesoski M, Miljkovic M, Prekajski M, Matovic B, Gulicovski J, Bucevac D (2012) Ceram Int 38:4875Google Scholar
  212. 212.
    Markovic ZM, Babic BM, Dramicanin MD, Holclajtner Antunovic ID, Pavlovic VB, Perusko DB, Todorovic Markovic BM (2012) Synth Metals 162:743Google Scholar
  213. 213.
    Editorial (2013) Carbon 65:1Google Scholar
  214. 214.
    Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B (2011) J Mater Chem 21:6494Google Scholar
  215. 215.
    Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J (2013) J Mater Chem A 1:7612Google Scholar
  216. 216.
    Cao Y, Feng J, Wu P (2010) Carbon 48:3834Google Scholar
  217. 217.
    Yang XW, He YS, Liao XZ, Ma ZF (2011) Acta Phys Chim Sinica 27:2583Google Scholar
  218. 218.
    Ning G, Xu C, Mu L, Chen G, Wang G, Gao J, Fan Z, Qian W, Wei F (2012) Chem Commun 48:6815Google Scholar
  219. 219.
    Oyer AJ, Carillo JMY, Hire CC, Schniepp HC, Asandei AD, Dobrynin AV, Adamson DH (2012) J Am Chem Soc 134:5018Google Scholar
  220. 220.
    Leenaerts O, Partoens E, Peeters FM (2009) Phys Rev B 79:235440Google Scholar
  221. 221.
    Mi X, Huang G, Xie W, Wang W, Liu Y, Gao J (2012) Carbon 50:4856Google Scholar
  222. 222.
    He Y, Zhang N, Wu F, Xu F, Liu Y, Gao J (2013) Mater Res Bull 48:3553Google Scholar
  223. 223.
    Ma J, Wang X, Liu Y, Wu T, Liu Y, Guo Y, Li R, Sun X, Wu F, Li C, Gao J (2013) J Mater Chem A 1:2192Google Scholar
  224. 224.
    Dhakshinamoorthy A, Alvaro M, Concepcion P, Fornes V, Garcia H (2012) Chem Commun 48:5443Google Scholar
  225. 225.
    He Y, Zhang N, Long Y, Sun H, Qiu H, Gao J (2012) Adv Mater Res 430–432:488Google Scholar
  226. 226.
    Maugey M, Neri W, Zakri C, Derre Penicaud A, Noe L, Chorro M, Launois P, Monthioux M, Poulin P (2007) J Nanosci Nanotechnol 7:2633Google Scholar
  227. 227.
    Kim TH, Doe C, Kline SR, Choi SM (2007) Adv Mater 19:929Google Scholar
  228. 228.
    Meng Z, Wu D, Wang L, Zhu H, Li Q (2012) Particuology 10:614Google Scholar
  229. 229.
    Taquahashi Y, Ogawa Y, Takagi A, Tsuji M, Morita K, Kanno J (2013) J Toxicol Sci 38:619Google Scholar
  230. 230.
    Yun YS, Bak H, Jin HJ (2010) Synth Metals 160:561Google Scholar
  231. 231.
    Nakagawa K, Thongprachan N, Charinpanitkul T, Tanthapanichakoon W (2010) Chem Eng Sci 65:1438Google Scholar
  232. 232.
    Nakagawa K, Yasumura Y, Thongprachan N, Noriaki Sano N (2011) Chem Eng Proc Proc Intens 50:22Google Scholar
  233. 233.
    Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Adv Mater 19:661Google Scholar
  234. 234.
    Liang L, Liu H, Yang W (2013) J Alloys Compd 559:167Google Scholar
  235. 235.
    Zhou X, Yin YX, Wan LJ, Guo YG (2012) Chem Commun 48:2198Google Scholar
  236. 236.
    Xin X, Yao X, Zhang Y, Liu Z, Xu X (2012) J Solid State Electrochem 16:2733Google Scholar
  237. 237.
    Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C (2013) J Power Sources 237:178Google Scholar
  238. 238.
    You B, Wang L, Yao L, Yang J (2013) Chem Commun 49:5016Google Scholar
  239. 239.
    Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Ceram Intern 40:1289Google Scholar
  240. 240.
    Guiderdoni C, Estournes C, Peigney A, Weibel A, Turq V, Laurent C (2011) Carbon 49:4535Google Scholar
  241. 241.
    Khaleghi E, Torikachvili M, Meyers MA, Olevsky EA (2012) Mater Lett 79:256Google Scholar
  242. 242.
    Capobianchi A, Foglia S, Imperatori P, Notargiacomo A, Giammatteo M, Del Buono T, Palange E (2007) Carbon 45:2205Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Inorganic Chemistry Division, Department of ChemistryM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations