Skip to main content

Cryogels via UV Irradiation

Part of the Advances in Polymer Science book series (POLYMER,volume 263)


An effective and facile method for the synthesis of chemically crosslinked supermacroporous polymer cryogels based on UV irradiation is reviewed. The influence of key factors like the irradiation dose, temperature of freezing, concentration of polymer or monomer precursor, molar mass of polymer precursor, and the type and amount of the photoinitiator on crosslinking efficiency is discussed. The versatility of the method for preparation of a large number of biocompatible, biodegradable, and/or stimuli-responsive cryogels is demonstrated. Examples include some specific properties of well-investigated polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (PNIPAAm) cryogels obtained by photocrosslinking as well as novel cryogels based on cellulose derivatives, hydrophobically modified polyglycidol (PGL), and ethoxytriethyleneglycol acrylate (ETEGA). Part of this review is focused on the applicability of supermacroporous cryogels as carriers of different species such as drugs, enzymes, nanoparticles, and cells immobilized in either cryogel walls (polymer matrix) or interconnected pores.


  • UV irradiation
  • Photocrosslinking
  • Cellulose derivatives
  • Stimuli-responsive cryogels
  • Carriers

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-05846-7_5
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-05846-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21





Silver nanoparticles


(4-Benzoylbenzyl)trimethylammonium chloride




Carbon nanotube


2-(Dimetylamino)ethyl methacrylate


Degree of swelling


Ethoxytriethyleneglycol acrylate


Gel fraction




2-Hydroxyethyl methacrylate






Lower critical solution temperature






Oligo(ethyleneglycol) methacrylate




Poly(ethylene glycol) diacrylate


Poly(ethylene oxide)


Poly(ethoxytriethyleneglycol) acrylate




Poly(2-hydroxyethyl methacrylate)




Temperature of volume phase transition


Vinyl caprolactam




  1. Lozinsky VI (2002) Cryogels on the basis of natural and synthetic polymers: preparation, properties and areas of implementation. Russ Chem Rev 71:489–511

    CAS  CrossRef  Google Scholar 

  2. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451

    CAS  CrossRef  Google Scholar 

  3. Kirsebom H, Mattiasson B (2011) Cryostructuration as a tool for preparing highly porous polymer materials. Polym Chem 2:1059–1062

    CAS  CrossRef  Google Scholar 

  4. Ivanov RV, Lozinsky VI, Noh SK, Han SS, Lyoo WS (2007) Preparation and characterization of polyacrylamide cryogels produced from a high-molecular-weight precursor. I. Influence of the reaction temperature and concentration of the crosslinking agent. J Appl Polym Sci 106:470–475

    CrossRef  Google Scholar 

  5. Zhang X-Z, Zhuo R-X (1999) Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromol Chem Phys 200:2602–2605

    CAS  CrossRef  Google Scholar 

  6. Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204

    CAS  CrossRef  Google Scholar 

  7. Yoshida M, Kumakura M, Kaetsu I (1979) Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers: 1. Immobilization of some enzymes by poly(2-hydroxyethyl methacrylate). Polymer 20:3–8

    CAS  CrossRef  Google Scholar 

  8. Yoshida M, Kumakura M, Kaetsu I (1979) Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers: 2. Effects of cooling rate and solvent on porosity and activity of immobilized enzymes. Polymer 20:9–12

    CAS  CrossRef  Google Scholar 

  9. Kumakura M, Kaetsu I (1984) Immobilization of cellulase using porous polymer matrix. J Appl Polym Sci 29:2713–2718

    CAS  CrossRef  Google Scholar 

  10. Doycheva M, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2004) UV induced cross-linking of poly(ethylene oxide) in aqueous solution. Macromol Mater Eng 289:676–680

    CAS  CrossRef  Google Scholar 

  11. Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47:6481–6484

    CAS  CrossRef  Google Scholar 

  12. Petrov P, Petrova E, Tchorbanov B, Tsvetanov CB (2007) Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation. Polymer 48:4943–4949

    CAS  CrossRef  Google Scholar 

  13. Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. ii. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037

    CAS  CrossRef  Google Scholar 

  14. Wach RA, Mitomo H, Yoshii F, Kume T (2002) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295

    CAS  CrossRef  Google Scholar 

  15. Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Instrum Methods Phys Res Sect B 211:533–544

    CAS  CrossRef  Google Scholar 

  16. Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of supermacroporous polymer hydrogels. Polymer 50:1118–1123

    CAS  CrossRef  Google Scholar 

  17. Fechine GJM, Barros JAG, Catalani LH (2004) Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer 45:4705–4709

    CAS  CrossRef  Google Scholar 

  18. Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830

    CAS  CrossRef  Google Scholar 

  19. Petrov P, Utrata-Wesołek A, Trzebicka B, Tsvetanov CB, Dworak A, Anioł J, Sieroń A (2011) Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties. Eur Polym J 47:981–988

    CAS  CrossRef  Google Scholar 

  20. Jamróz-Piegza M, Utrata-Wesołek A, Trzebicka B, Dworak A (2006) Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. Eur Polym J 42:2497–2506

    CrossRef  Google Scholar 

  21. Petrov P, Momekova D, Kostova B, Momekov G, Toncheva- Moncheva N, Tsvetanov CB, Lambov N (2010) Super-macroporous poly(ethoxytriethyleneglycol acrylate) hydrogels for sustained delivery of hydrophilic drugs. J Control Release 148:81–82

    CrossRef  Google Scholar 

  22. Kostova B, Momekova D, Petrov P, Momekov G, Toncheva-Moncheva N, Tsvetanov CB, Lambov N (2011) Poly(ethoxytriethylene glycol acrylate) cryogels as novel sustained drug release systems for oral application. Polymer 52:1217–1222

    CAS  CrossRef  Google Scholar 

  23. Kahveci MU, Beyazkilic Z, Yagci Y (2010) Polyacrylamide cryogels by photoinitiated free radical polymerization. J Polym Sci Polym Chem 48:4989–4994

    CAS  CrossRef  Google Scholar 

  24. Barrow M, Zhang H (2013) Aligned porous stimuli-responsive hydrogels via directional freezing and frozen UV initiated polymerization. Soft Matter 9:2723–2729

    CAS  CrossRef  Google Scholar 

  25. Zhang X-Z, Chu C-C (2003) Thermosensitive PNIPAAm cryogel with superfast and stable oscillatory properties. Chem Commun 2003(12):1446–1447

    CrossRef  Google Scholar 

  26. Petrov PD, Georgiev GL (2011) Ice-mediated coating of macroporous cryogels by carbon nanotubes: a concept towards electrically conducting nanocomposites. Chem Commun 47:5768–5770

    CAS  CrossRef  Google Scholar 

  27. Petrov PD, Georgiev GL (2012) Fabrication of super-macroporous nanocomposites by deposition of carbon nanotubes onto polymer cryogels. Eur Polym J 48:1366–1373

    CAS  CrossRef  Google Scholar 

  28. Velickova E, Winkelhausen E, Kuzmanova S, Cvetkovska M, Tsvetanov C (2009) Hydroxyethylcellulose cryogels used for entrapment of Saccharomyces cerevisiae cells. React Funct Polym 69:688–693

    CAS  CrossRef  Google Scholar 

  29. Winkelhausen E, Velickova E, Amartey SA, Kuzmanova S (2010) Ethanol production using immobilized saccharomyces cerevisiae in lyophilized cellulose gel. Appl Biochem Biotechnol 162:2214–2220

    CAS  CrossRef  Google Scholar 

  30. Velickova E, Petrov P, Tsvetanov C, Kuzmanova S, Cvetkovska M, Winkelhausen E (2010) Entrapment of Saccharomyces cerevisiae cells in u.v. crosslinked hydroxyethylcellulose/poly(ethylene oxide) double-layered gels. React Funct Polym 70:908–915

    CAS  CrossRef  Google Scholar 

  31. Satchanska G, Topalova Y, Dimkov R, Petrov P, Tsvetanov C, Selenska-Pobell S, Gorbovskaya A, Bogdanov V, Golovinsky E (2009) Phenol biodegradation by two xenobiotics-tolerant bacteria immobilized in poly(ethylene oxide) cryogels. Compt Rend Acad Bulg Sci 62:957–964

    CAS  Google Scholar 

  32. Topalova Y, Dimkov R, Todorova Y, Daskalova E, Petrov P (2011) Biodegradation of phenol by immobilized in PEO-cryogel Bacillus laterosporus bt-271 in sequencing bath biofilter. Biotechnol Biotech Equip 25:2613–2619

    CAS  CrossRef  Google Scholar 

  33. Christova N, Petrov P, Kabaivanova L (2013) Biosurfactant production by pseudomonas aeruginosa BN10 cells entrapped in cryogels. Z Naturforsch 68C(1–2):47–52

    CrossRef  Google Scholar 

  34. Petrov P, Pavlova S, Tsvetanov CB, Topalova Y, Dimkov R (2011) In situ entrapment of urease in cryogels of poly(N-isopropylacrylamide): an effective strategy for noncovalent immobilization of enzymes. J Appl Polym Sci 122:1742–1748

    CAS  CrossRef  Google Scholar 

  35. Petrov P, Jeleva D, Tsvetanov CB (2012) Encapsulation of urease in double-layered hydrogels of macroporous poly(2-hydroxyethyl methacrylate) core and poly(ethylene oxide) outer layer: fabrication and biosensing properties. Polym Int 61:235–239

    CAS  CrossRef  Google Scholar 

  36. Ravi Kumar MNV, Kumar N, Domb AJ, Arora MA (2002) Pharmaceutical polymeric controlled drug delivery systems. Adv Polym Sci 160:45–117

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Petar D. Petrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petrov, P.D., Tsvetanov, C.B. (2014). Cryogels via UV Irradiation. In: Okay, O. (eds) Polymeric Cryogels. Advances in Polymer Science, vol 263. Springer, Cham.

Download citation