Lozinsky VI (2002) Cryogels on the basis of natural and synthetic polymers: preparation, properties and areas of implementation. Russ Chem Rev 71:489–511
CAS
CrossRef
Google Scholar
Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451
CAS
CrossRef
Google Scholar
Kirsebom H, Mattiasson B (2011) Cryostructuration as a tool for preparing highly porous polymer materials. Polym Chem 2:1059–1062
CAS
CrossRef
Google Scholar
Ivanov RV, Lozinsky VI, Noh SK, Han SS, Lyoo WS (2007) Preparation and characterization of polyacrylamide cryogels produced from a high-molecular-weight precursor. I. Influence of the reaction temperature and concentration of the crosslinking agent. J Appl Polym Sci 106:470–475
CrossRef
Google Scholar
Zhang X-Z, Zhuo R-X (1999) Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromol Chem Phys 200:2602–2605
CAS
CrossRef
Google Scholar
Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204
CAS
CrossRef
Google Scholar
Yoshida M, Kumakura M, Kaetsu I (1979) Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers: 1. Immobilization of some enzymes by poly(2-hydroxyethyl methacrylate). Polymer 20:3–8
CAS
CrossRef
Google Scholar
Yoshida M, Kumakura M, Kaetsu I (1979) Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers: 2. Effects of cooling rate and solvent on porosity and activity of immobilized enzymes. Polymer 20:9–12
CAS
CrossRef
Google Scholar
Kumakura M, Kaetsu I (1984) Immobilization of cellulase using porous polymer matrix. J Appl Polym Sci 29:2713–2718
CAS
CrossRef
Google Scholar
Doycheva M, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2004) UV induced cross-linking of poly(ethylene oxide) in aqueous solution. Macromol Mater Eng 289:676–680
CAS
CrossRef
Google Scholar
Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47:6481–6484
CAS
CrossRef
Google Scholar
Petrov P, Petrova E, Tchorbanov B, Tsvetanov CB (2007) Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation. Polymer 48:4943–4949
CAS
CrossRef
Google Scholar
Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. ii. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037
CAS
CrossRef
Google Scholar
Wach RA, Mitomo H, Yoshii F, Kume T (2002) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295
CAS
CrossRef
Google Scholar
Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Instrum Methods Phys Res Sect B 211:533–544
CAS
CrossRef
Google Scholar
Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of supermacroporous polymer hydrogels. Polymer 50:1118–1123
CAS
CrossRef
Google Scholar
Fechine GJM, Barros JAG, Catalani LH (2004) Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer 45:4705–4709
CAS
CrossRef
Google Scholar
Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830
CAS
CrossRef
Google Scholar
Petrov P, Utrata-Wesołek A, Trzebicka B, Tsvetanov CB, Dworak A, Anioł J, Sieroń A (2011) Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties. Eur Polym J 47:981–988
CAS
CrossRef
Google Scholar
Jamróz-Piegza M, Utrata-Wesołek A, Trzebicka B, Dworak A (2006) Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. Eur Polym J 42:2497–2506
CrossRef
Google Scholar
Petrov P, Momekova D, Kostova B, Momekov G, Toncheva- Moncheva N, Tsvetanov CB, Lambov N (2010) Super-macroporous poly(ethoxytriethyleneglycol acrylate) hydrogels for sustained delivery of hydrophilic drugs. J Control Release 148:81–82
CrossRef
Google Scholar
Kostova B, Momekova D, Petrov P, Momekov G, Toncheva-Moncheva N, Tsvetanov CB, Lambov N (2011) Poly(ethoxytriethylene glycol acrylate) cryogels as novel sustained drug release systems for oral application. Polymer 52:1217–1222
CAS
CrossRef
Google Scholar
Kahveci MU, Beyazkilic Z, Yagci Y (2010) Polyacrylamide cryogels by photoinitiated free radical polymerization. J Polym Sci Polym Chem 48:4989–4994
CAS
CrossRef
Google Scholar
Barrow M, Zhang H (2013) Aligned porous stimuli-responsive hydrogels via directional freezing and frozen UV initiated polymerization. Soft Matter 9:2723–2729
CAS
CrossRef
Google Scholar
Zhang X-Z, Chu C-C (2003) Thermosensitive PNIPAAm cryogel with superfast and stable oscillatory properties. Chem Commun 2003(12):1446–1447
CrossRef
Google Scholar
Petrov PD, Georgiev GL (2011) Ice-mediated coating of macroporous cryogels by carbon nanotubes: a concept towards electrically conducting nanocomposites. Chem Commun 47:5768–5770
CAS
CrossRef
Google Scholar
Petrov PD, Georgiev GL (2012) Fabrication of super-macroporous nanocomposites by deposition of carbon nanotubes onto polymer cryogels. Eur Polym J 48:1366–1373
CAS
CrossRef
Google Scholar
Velickova E, Winkelhausen E, Kuzmanova S, Cvetkovska M, Tsvetanov C (2009) Hydroxyethylcellulose cryogels used for entrapment of Saccharomyces cerevisiae cells. React Funct Polym 69:688–693
CAS
CrossRef
Google Scholar
Winkelhausen E, Velickova E, Amartey SA, Kuzmanova S (2010) Ethanol production using immobilized saccharomyces cerevisiae in lyophilized cellulose gel. Appl Biochem Biotechnol 162:2214–2220
CAS
CrossRef
Google Scholar
Velickova E, Petrov P, Tsvetanov C, Kuzmanova S, Cvetkovska M, Winkelhausen E (2010) Entrapment of Saccharomyces cerevisiae cells in u.v. crosslinked hydroxyethylcellulose/poly(ethylene oxide) double-layered gels. React Funct Polym 70:908–915
CAS
CrossRef
Google Scholar
Satchanska G, Topalova Y, Dimkov R, Petrov P, Tsvetanov C, Selenska-Pobell S, Gorbovskaya A, Bogdanov V, Golovinsky E (2009) Phenol biodegradation by two xenobiotics-tolerant bacteria immobilized in poly(ethylene oxide) cryogels. Compt Rend Acad Bulg Sci 62:957–964
CAS
Google Scholar
Topalova Y, Dimkov R, Todorova Y, Daskalova E, Petrov P (2011) Biodegradation of phenol by immobilized in PEO-cryogel Bacillus laterosporus bt-271 in sequencing bath biofilter. Biotechnol Biotech Equip 25:2613–2619
CAS
CrossRef
Google Scholar
Christova N, Petrov P, Kabaivanova L (2013) Biosurfactant production by pseudomonas aeruginosa BN10 cells entrapped in cryogels. Z Naturforsch 68C(1–2):47–52
CrossRef
Google Scholar
Petrov P, Pavlova S, Tsvetanov CB, Topalova Y, Dimkov R (2011) In situ entrapment of urease in cryogels of poly(N-isopropylacrylamide): an effective strategy for noncovalent immobilization of enzymes. J Appl Polym Sci 122:1742–1748
CAS
CrossRef
Google Scholar
Petrov P, Jeleva D, Tsvetanov CB (2012) Encapsulation of urease in double-layered hydrogels of macroporous poly(2-hydroxyethyl methacrylate) core and poly(ethylene oxide) outer layer: fabrication and biosensing properties. Polym Int 61:235–239
CAS
CrossRef
Google Scholar
Ravi Kumar MNV, Kumar N, Domb AJ, Arora MA (2002) Pharmaceutical polymeric controlled drug delivery systems. Adv Polym Sci 160:45–117
CrossRef
Google Scholar