Advertisement

Cryogels via UV Irradiation

  • Petar D. PetrovEmail author
  • Christo B. Tsvetanov
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 263)

Abstract

An effective and facile method for the synthesis of chemically crosslinked supermacroporous polymer cryogels based on UV irradiation is reviewed. The influence of key factors like the irradiation dose, temperature of freezing, concentration of polymer or monomer precursor, molar mass of polymer precursor, and the type and amount of the photoinitiator on crosslinking efficiency is discussed. The versatility of the method for preparation of a large number of biocompatible, biodegradable, and/or stimuli-responsive cryogels is demonstrated. Examples include some specific properties of well-investigated polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (PNIPAAm) cryogels obtained by photocrosslinking as well as novel cryogels based on cellulose derivatives, hydrophobically modified polyglycidol (PGL), and ethoxytriethyleneglycol acrylate (ETEGA). Part of this review is focused on the applicability of supermacroporous cryogels as carriers of different species such as drugs, enzymes, nanoparticles, and cells immobilized in either cryogel walls (polymer matrix) or interconnected pores.

Keywords

UV irradiation Photocrosslinking Cellulose derivatives Stimuli-responsive cryogels Carriers 

Abbreviations

AAm

Acrylamide

AgNPs

Silver nanoparticles

BBTMAC

(4-Benzoylbenzyl)trimethylammonium chloride

BisAAm

N,N′-methylenebisacrylamide

CNT

Carbon nanotube

DMAEMA

2-(Dimetylamino)ethyl methacrylate

DS

Degree of swelling

ETEGA

Ethoxytriethyleneglycol acrylate

GF

Gel fraction

HEC

2-Hydroxyethylcellulose

HEMA

2-Hydroxyethyl methacrylate

HPC

Hydroxypropylcellulose

HPMC

(Hydroxypropyl)methylcellulose

LCST

Lower critical solution temperature

MC

Methylcellulose

NIPAAm

N-Isopropylacrylamide

OEGMA

Oligo(ethyleneglycol) methacrylate

PAAm

Polyacrylamide

PEGDA

Poly(ethylene glycol) diacrylate

PEO

Poly(ethylene oxide)

PETEGA

Poly(ethoxytriethyleneglycol) acrylate

PGL

Polyglycidol

PHEMA

Poly(2-hydroxyethyl methacrylate)

PNIPAAm

Poly(N-isopropylacrylamide)

TVPT

Temperature of volume phase transition

VCL

Vinyl caprolactam

UV

Ultraviolet

References

  1. 1.
    Lozinsky VI (2002) Cryogels on the basis of natural and synthetic polymers: preparation, properties and areas of implementation. Russ Chem Rev 71:489–511CrossRefGoogle Scholar
  2. 2.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451CrossRefGoogle Scholar
  3. 3.
    Kirsebom H, Mattiasson B (2011) Cryostructuration as a tool for preparing highly porous polymer materials. Polym Chem 2:1059–1062CrossRefGoogle Scholar
  4. 4.
    Ivanov RV, Lozinsky VI, Noh SK, Han SS, Lyoo WS (2007) Preparation and characterization of polyacrylamide cryogels produced from a high-molecular-weight precursor. I. Influence of the reaction temperature and concentration of the crosslinking agent. J Appl Polym Sci 106:470–475CrossRefGoogle Scholar
  5. 5.
    Zhang X-Z, Zhuo R-X (1999) Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromol Chem Phys 200:2602–2605CrossRefGoogle Scholar
  6. 6.
    Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204CrossRefGoogle Scholar
  7. 7.
    Yoshida M, Kumakura M, Kaetsu I (1979) Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers: 1. Immobilization of some enzymes by poly(2-hydroxyethyl methacrylate). Polymer 20:3–8CrossRefGoogle Scholar
  8. 8.
    Yoshida M, Kumakura M, Kaetsu I (1979) Immobilization of enzymes by radiation-induced polymerization of glass-forming monomers: 2. Effects of cooling rate and solvent on porosity and activity of immobilized enzymes. Polymer 20:9–12CrossRefGoogle Scholar
  9. 9.
    Kumakura M, Kaetsu I (1984) Immobilization of cellulase using porous polymer matrix. J Appl Polym Sci 29:2713–2718CrossRefGoogle Scholar
  10. 10.
    Doycheva M, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2004) UV induced cross-linking of poly(ethylene oxide) in aqueous solution. Macromol Mater Eng 289:676–680CrossRefGoogle Scholar
  11. 11.
    Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47:6481–6484CrossRefGoogle Scholar
  12. 12.
    Petrov P, Petrova E, Tchorbanov B, Tsvetanov CB (2007) Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation. Polymer 48:4943–4949CrossRefGoogle Scholar
  13. 13.
    Wach RA, Mitomo H, Yoshii F, Kume T (2001) Hydrogel of biodegradable cellulose derivatives. ii. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037CrossRefGoogle Scholar
  14. 14.
    Wach RA, Mitomo H, Yoshii F, Kume T (2002) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295CrossRefGoogle Scholar
  15. 15.
    Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Instrum Methods Phys Res Sect B 211:533–544CrossRefGoogle Scholar
  16. 16.
    Petrov P, Petrova E, Tsvetanov CB (2009) UV-assisted synthesis of supermacroporous polymer hydrogels. Polymer 50:1118–1123CrossRefGoogle Scholar
  17. 17.
    Fechine GJM, Barros JAG, Catalani LH (2004) Poly(N-vinyl-2-pyrrolidone) hydrogel production by ultraviolet radiation: new methodologies to accelerate crosslinking. Polymer 45:4705–4709CrossRefGoogle Scholar
  18. 18.
    Stoyneva V, Momekova D, Kostova B, Petrov P (2014) Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830CrossRefGoogle Scholar
  19. 19.
    Petrov P, Utrata-Wesołek A, Trzebicka B, Tsvetanov CB, Dworak A, Anioł J, Sieroń A (2011) Biocompatible cryogels of thermosensitive polyglycidol derivatives with ultra-rapid swelling properties. Eur Polym J 47:981–988CrossRefGoogle Scholar
  20. 20.
    Jamróz-Piegza M, Utrata-Wesołek A, Trzebicka B, Dworak A (2006) Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. Eur Polym J 42:2497–2506CrossRefGoogle Scholar
  21. 21.
    Petrov P, Momekova D, Kostova B, Momekov G, Toncheva- Moncheva N, Tsvetanov CB, Lambov N (2010) Super-macroporous poly(ethoxytriethyleneglycol acrylate) hydrogels for sustained delivery of hydrophilic drugs. J Control Release 148:81–82CrossRefGoogle Scholar
  22. 22.
    Kostova B, Momekova D, Petrov P, Momekov G, Toncheva-Moncheva N, Tsvetanov CB, Lambov N (2011) Poly(ethoxytriethylene glycol acrylate) cryogels as novel sustained drug release systems for oral application. Polymer 52:1217–1222CrossRefGoogle Scholar
  23. 23.
    Kahveci MU, Beyazkilic Z, Yagci Y (2010) Polyacrylamide cryogels by photoinitiated free radical polymerization. J Polym Sci Polym Chem 48:4989–4994CrossRefGoogle Scholar
  24. 24.
    Barrow M, Zhang H (2013) Aligned porous stimuli-responsive hydrogels via directional freezing and frozen UV initiated polymerization. Soft Matter 9:2723–2729CrossRefGoogle Scholar
  25. 25.
    Zhang X-Z, Chu C-C (2003) Thermosensitive PNIPAAm cryogel with superfast and stable oscillatory properties. Chem Commun 2003(12):1446–1447CrossRefGoogle Scholar
  26. 26.
    Petrov PD, Georgiev GL (2011) Ice-mediated coating of macroporous cryogels by carbon nanotubes: a concept towards electrically conducting nanocomposites. Chem Commun 47:5768–5770CrossRefGoogle Scholar
  27. 27.
    Petrov PD, Georgiev GL (2012) Fabrication of super-macroporous nanocomposites by deposition of carbon nanotubes onto polymer cryogels. Eur Polym J 48:1366–1373CrossRefGoogle Scholar
  28. 28.
    Velickova E, Winkelhausen E, Kuzmanova S, Cvetkovska M, Tsvetanov C (2009) Hydroxyethylcellulose cryogels used for entrapment of Saccharomyces cerevisiae cells. React Funct Polym 69:688–693CrossRefGoogle Scholar
  29. 29.
    Winkelhausen E, Velickova E, Amartey SA, Kuzmanova S (2010) Ethanol production using immobilized saccharomyces cerevisiae in lyophilized cellulose gel. Appl Biochem Biotechnol 162:2214–2220CrossRefGoogle Scholar
  30. 30.
    Velickova E, Petrov P, Tsvetanov C, Kuzmanova S, Cvetkovska M, Winkelhausen E (2010) Entrapment of Saccharomyces cerevisiae cells in u.v. crosslinked hydroxyethylcellulose/poly(ethylene oxide) double-layered gels. React Funct Polym 70:908–915CrossRefGoogle Scholar
  31. 31.
    Satchanska G, Topalova Y, Dimkov R, Petrov P, Tsvetanov C, Selenska-Pobell S, Gorbovskaya A, Bogdanov V, Golovinsky E (2009) Phenol biodegradation by two xenobiotics-tolerant bacteria immobilized in poly(ethylene oxide) cryogels. Compt Rend Acad Bulg Sci 62:957–964Google Scholar
  32. 32.
    Topalova Y, Dimkov R, Todorova Y, Daskalova E, Petrov P (2011) Biodegradation of phenol by immobilized in PEO-cryogel Bacillus laterosporus bt-271 in sequencing bath biofilter. Biotechnol Biotech Equip 25:2613–2619CrossRefGoogle Scholar
  33. 33.
    Christova N, Petrov P, Kabaivanova L (2013) Biosurfactant production by pseudomonas aeruginosa BN10 cells entrapped in cryogels. Z Naturforsch 68C(1–2):47–52CrossRefGoogle Scholar
  34. 34.
    Petrov P, Pavlova S, Tsvetanov CB, Topalova Y, Dimkov R (2011) In situ entrapment of urease in cryogels of poly(N-isopropylacrylamide): an effective strategy for noncovalent immobilization of enzymes. J Appl Polym Sci 122:1742–1748CrossRefGoogle Scholar
  35. 35.
    Petrov P, Jeleva D, Tsvetanov CB (2012) Encapsulation of urease in double-layered hydrogels of macroporous poly(2-hydroxyethyl methacrylate) core and poly(ethylene oxide) outer layer: fabrication and biosensing properties. Polym Int 61:235–239CrossRefGoogle Scholar
  36. 36.
    Ravi Kumar MNV, Kumar N, Domb AJ, Arora MA (2002) Pharmaceutical polymeric controlled drug delivery systems. Adv Polym Sci 160:45–117CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of PolymersBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations