Kinetic Analysis of Cryotropic Gelation of Poly(Vinyl Alcohol)/Water Solutions by Small-Angle Neutron Scattering

  • Claudio De Rosa
  • Finizia AuriemmaEmail author
  • Rocco Di Girolamo
Part of the Advances in Polymer Science book series (POLYMER, volume 263)


Graphical Abstract

Aqueous poly(vinyl alcohol) (PVA) solutions subjected to cryogenic treatment form strong physical gels. The cryogenic treatment basically consists of freezing an initially homogeneous polymer solution at low temperatures, storing in the frozen state for a definite time, and defrosting. These gels are of great interest for biotechnology, medicine, the food industry, and many other applications. The outstanding properties of these systems depend on a complex macroporous architecture, whereby PVA chains and water molecules are organized over different hierarchical length scales. The structure and the principal processes subtending the formation of these systems are discussed in the framework of our current understanding of polymer gels. These processes involve formation of ice crystals, PVA crystallization, liquid–liquid phase separation, hydrogen bonding, and entanglements. Small angle neutron scattering is used to follow the cryotropic gelation of PVA/water solutions and detailed information is extracted concerning the gelation mechanism and kinetic parameters related to the formation of these complex systems.

Open image in new window


Cryotropic gelation Poly(vinyl alcohol) hydrogels Time-resolving small angle neutron scattering Ostwald stage-rule Confined polymer crystallization 



Atactic polystyrene


Berghmans point


Confocal laser scanning microscopy


Polymer concentration

\( \raisebox{1ex}{$ d\sigma $}\!\left/ \!\raisebox{-1ex}{$ d\varOmega $}\right. \)

Scattering cross-section


Surface fractal dimension


Differential scanning calorimetry


Free energy


Order parameter


Fractions of crystalline phase from DSC analysis


Fraction of rigid protons from NMR measurements


Crystallinity index from WAXS analysis


Liquid–liquid phase separation


Nuclear magnetic resonance


Poly(ethylene glycol)


Poly(vinyl alcohol)


Scattering vector


Small angle neutron scattering


Scanning electronic microscopy


Transmission electron microscopy


Glass transition temperature


Melting temperature


Time resolving-SANS


Upper critical solution temperature


Wide angle X-ray scattering


  1. 1.
    Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37CrossRefGoogle Scholar
  2. 2.
    Peppas NM (1975) Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Makromol Chem 176:3433CrossRefGoogle Scholar
  3. 3.
    Stauffer S, Peppas NA (1992) Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33:3932CrossRefGoogle Scholar
  4. 4.
    Lozinsky VI (1998) Cryotropic gelation of poly(vinyl alcohol) solutions. Russ Chem Rev 67:573CrossRefGoogle Scholar
  5. 5.
    Lozinsky VI (2002) Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Russ Chem Rev 71:489CrossRefGoogle Scholar
  6. 6.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445CrossRefGoogle Scholar
  7. 7.
    Lozinsky VI, Damshkaln LG (2000) Study of cryostructuration of polymer systems. XVII. Poly(vinyl alcohol) cryogels: dynamics of the cryotropic gel formation. J Appl Polym Sci 77:2017CrossRefGoogle Scholar
  8. 8.
    Watase M, Nishinari K (1985) Reological and DSC changes in poly(vinyl alcohol) gels induced by immersion in water. J Polym Sci Part B: Polym Phys Ed 23:1803Google Scholar
  9. 9.
    Nishinari K, Watase M, Tanaka F (1996) Structure of junction zones in poly(vinyl alcohol) gels by rheological and thermal studies. J Chim Phys Phys Chim Biol 93:880Google Scholar
  10. 10.
    Zhang H, Xia H, Zhao Y (2012) Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett 1:1233CrossRefGoogle Scholar
  11. 11.
    Peppas NA, Mongia NK (1997) Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur J Pharm Biopharm 43:51CrossRefGoogle Scholar
  12. 12.
    Finch CA (1992) Polyvinyl alcohol – developments. Wiley, LondonGoogle Scholar
  13. 13.
    Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969CrossRefGoogle Scholar
  14. 14.
    Cohen Addad JP (1996) Physical properties of polymeric gels. Wiley, LondonGoogle Scholar
  15. 15.
    Loh XJ, Scherman OA (2013) Polymeric and self-assembled hydrogels. The Royal Society of Chemistry, CambridgeGoogle Scholar
  16. 16.
    Papon P, Leblond J, Meijer PHE (2002) The physics of phase transitions: concepts and applications. Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Keller A (1995) Aspects of polymer gels. Faraday Discuss 101:1CrossRefGoogle Scholar
  18. 18.
    Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1CrossRefGoogle Scholar
  19. 19.
    Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Tanaka T (1981) Gels Sci Am 244:124CrossRefGoogle Scholar
  21. 21.
    Tanaka T, Sun ST, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T (1987) Mechanical instability of gels at the phase transition. Nature 325:796CrossRefGoogle Scholar
  22. 22.
    Durmaz-Hilmioglu N, Yildirim AE, Sakaoglu AS, Tulbentci S (2001) Acetic acid dehydration by pervaporation. Chem Eng Proc 40:263CrossRefGoogle Scholar
  23. 23.
    Benzekri K, Essamri A, Toreis N, Souissi A, Maarouf T, Mas A (2001) Membranes d’alcool polyvinylique traitées par plasma d’acide acrylique. Application à la déshydratation des mélanges eau–éthanol par pervaporation. Eur Polym J 37:1607CrossRefGoogle Scholar
  24. 24.
    deGennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  25. 25.
    Keller A, Cheng SZD (1998) The role of metastability in polymer phase transitions. Polymer 39:4461CrossRefGoogle Scholar
  26. 26.
    Atkins EDT, Isaac DH, Keller A, Miyasaka K (1977) Analysis of anomalous X-ray diffraction effects of isotactic polystyrene gels and its implications for chain conformation and isomeric homogeneity. J Polym Sci Polym Phys Ed 15:211CrossRefGoogle Scholar
  27. 27.
    Atkins EDT, Isaac DH, Keller A (1980) Conformation of polystyrene with special emphasis to the near all-trans extended-chain model relevant in polystyrene gel. J Polym Sci Polym Phys Ed 18:71CrossRefGoogle Scholar
  28. 28.
    Atkins EDT, Keller A, Shapiro JS, Lemstra PJ (1981) Extended-chain structure for isotactic polystyrene: additional X-ray diffraction and calorimetric results. Polymer 22:1161CrossRefGoogle Scholar
  29. 29.
    Girolamo M, Keller A, Miyasaka M, Overbergh N (1976) Gelation-crystallization in isotactic polystyrene solutions and its implications to crystal morphology, to the origin and structure of gels, and to the chemical homogeneity of polyolefins. J Polym Sci Polym Phys Ed 14:39CrossRefGoogle Scholar
  30. 30.
    Chatani Y, Nakamura N (1993) Coiled-coil molecular model for isotactic polystyrene gels. Polymer 34:1644CrossRefGoogle Scholar
  31. 31.
    Auriemma F, De Rosa C, Corradini P (2004) Non-helical chain conformations of isotactic polymers in the crystalline state. Macromol Chem Phys 205:390CrossRefGoogle Scholar
  32. 32.
    Guenet J-M (1992) Thermoreversible gelation of polymers and biopolymers. Academic, London, 1992Google Scholar
  33. 33.
    Ostwald W (1897) Studies on the formation and inversion of solids. First paper: supersaturation and supercooling. Z Phys Chem 22:289Google Scholar
  34. 34.
    Hikmet RM, Callister S, Keller A (1988) Thermoreversible gelation of atactic polystyrene: phase transformation and morphology. Polymer 29:1378CrossRefGoogle Scholar
  35. 35.
    Wellinghoff ST, Shaw J, Baer E (1979) Polymeric materials from the gel state. The development of fringed micelle structure in a glass. Macromolecules 12:932CrossRefGoogle Scholar
  36. 36.
    Arnauts J, Berghmans H (1987) Amorphous thermoreversible gels of atactic polystyrene. Polym Commun 28:66Google Scholar
  37. 37.
    Strobl GR (2007) The physics of polymers. Springer, BerlinGoogle Scholar
  38. 38.
    Berghmans S, Mewis J, Berghmans H, Meijer H (1995) Phase behavior and structure formation in solutions of poly(2,6-dimethyl-1,4-phenylene ether). Polymer 36:3085CrossRefGoogle Scholar
  39. 39.
    Tubbs RK (1966) Sequence distribution of partially hydrolyzed poly(vinyl acetate). J Polym Sci A1 4:623CrossRefGoogle Scholar
  40. 40.
    Bunn CW, Peiser HS (1947) Mixed crystal formation in high polymers. Nature 159:161CrossRefGoogle Scholar
  41. 41.
    Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161:929CrossRefGoogle Scholar
  42. 42.
    Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly(vinyl alcohol) hydrogels obtained by freezing and thawing techniques. Macromolecules 37:1921CrossRefGoogle Scholar
  43. 43.
    Komatsu M, Inoue T, Miyasaka K (1986) Light-scattering studies on the sol–gel transition in aqueous solutions of poly(vinyl alcohol). J Polym Sci: Polym Phys Ed 24:303CrossRefGoogle Scholar
  44. 44.
    Kawanishi K, Komatsu M, Inoue T (1987) Thermodynamic consideration of the sol-gel transition in polymer solutions. Polymer 28:980CrossRefGoogle Scholar
  45. 45.
    Pines E, Prins W (1973) Structure-property relations of thermoreversible macromolecular hydrogels. Macromolecules 6:888CrossRefGoogle Scholar
  46. 46.
    Peppas NA (1976) Crystallization of polyvinyl alcohol-water films by slow dehydration. Eur Polym J 12:495CrossRefGoogle Scholar
  47. 47.
    Mallapragada SK, Peppas NA (1996) Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. J Polym Sci Part B: Polym Phys 34:1339CrossRefGoogle Scholar
  48. 48.
    Kukharchik MM, Baramboim NK (1972) Change in the properties of aqueous solutions of poly(vinyl alcohol) during cryolytic action. Vysokomol Soedin 14B:843Google Scholar
  49. 49.
    Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264:595CrossRefGoogle Scholar
  50. 50.
    Watase M, Nishinari K (1989) Effect of the degree of saponification on the rheological and thermal properties of poly(vinyl alcohol) gels. Makromol Chem 190:155CrossRefGoogle Scholar
  51. 51.
    Kobayashi M, Ando I, Ishii T, Amiya S (1995) Structural study of poly(vinyl alcohol) in the gel state by high-resolution solid-state 13C NMR spectroscopy. Macromolecules 28:6677CrossRefGoogle Scholar
  52. 52.
    Kobayashi M, Ando I, Ishii T, Amiya S (1998) Structural and dynamical studies of poly(vinyl alcohol) gels by high-resolution solid-state 13C NMR spectroscopy. J Mol Struct 440:155CrossRefGoogle Scholar
  53. 53.
    Kobayashi M, Kanekiyo M, Ando I (1998) A study of molecular motion of PVA/water system by high-pressure 1H pulse-NMR method. Polym Gels Netw 6:347CrossRefGoogle Scholar
  54. 54.
    Kanekiyo M, Kobayashi M, Ando I, Kurosu H, Ishii T, Amiya S (1998) A structural and dynamic study of poly(vinyl alcohol) in the gel state by solid-state 13C NMR and 1H pulse NMR. J Mol Struct 447:49CrossRefGoogle Scholar
  55. 55.
    Terao T, Maeda S, Saika A (1983) High-resolution solid-state carbon-13 NMR of poly(vinyl alcohol): enhancement of tacticity splitting by intramolecular hydrogen bonds. Macromolecules 16:1535CrossRefGoogle Scholar
  56. 56.
    Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Lauprêtre F (2003) Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer 44:3375CrossRefGoogle Scholar
  57. 57.
    Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510CrossRefGoogle Scholar
  58. 58.
    Valentín JL, López D, Hernández R, Mijangos C, Saalwächter K (2009) Structure of poly(vinyl alcohol) cryo-hydrogels as studied by proton low-field NMR spectroscopy. Macromolecules 42:263CrossRefGoogle Scholar
  59. 59.
    Fergg F, Keil FJ, Quader H (2001) Investigations of the microscopic structure of poly(vinyl alcohol) hydrogels by confocal laser scanning microscopy. Colloid Polym Sci 279:61CrossRefGoogle Scholar
  60. 60.
    Ricciardi R, Mangiapia G, Lo Celso F, Paduano L, Triolo R, Auriemma F, De Rosa C, Lauprêtre F (2005) Structural organization of poly(vinyl alcohol) hydrogels obtained by freezing and thawing techniques: a SANS study. Chem Mater 17:1183CrossRefGoogle Scholar
  61. 61.
    Willcox PJ, Howie DW Jr, Schimdt-Rohr K, Hoagland A, Gido SP, Pudjijanto S, Kleiner LW, Venkatraman S (1999) Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J Polym Sci Part B: Polym Phys 37:3438CrossRefGoogle Scholar
  62. 62.
    Ricciardi R, D’Errico G, Auriemma F, Ducouret G, Tedeschi AM, De Rosa C, Lauprêtre F, Lafuma F (2005) Short time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38:6629CrossRefGoogle Scholar
  63. 63.
    Tedeschi A, Auriemma F, Ricciardi R, Mangiapia G, Trifuoggi M, Franco L, De Rosa C, Heenan RK, Paduano L, D’Errico G (2006) A study of the microstructural and diffusion properties of poly(vinyl alcohol) cryogels containing surfactant supramolecular aggregates. J Phys Chem B 110:23031CrossRefGoogle Scholar
  64. 64.
    Hyon S-H, Ikada Y (1987) Porous and transparent poly(vinyl alcohol) gel and method of manufacturing the same. US Patent 4663358Google Scholar
  65. 65.
    Hyon S-H, Cha W-I, Ikada Y, Kita M, Ogura Y, Honda Y (1994) Poly(vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 5:397CrossRefGoogle Scholar
  66. 66.
    Berghmans H, Stoks W (1986) Thermoreversible gelation of vinylpolymers. In: Kleintjens LA, Lemstra PJ (eds) Integration of fundamental polymer science and technology. Springer, LondonGoogle Scholar
  67. 67.
    Kanaya T, Ohkura M, Kaji H, Furusaka M, Misawa M (1994) Structure of poly(viny1 alcohol) gels studied by wide- and small-angle neutron scattering. Macromolecules 27:5609CrossRefGoogle Scholar
  68. 68.
    Kanaya T, Takeshita H, Nishikoji Y, Ohkura M, Nishida K, Kaji K (1998) Micro- and mesoscopic structure of poly(vinyl alcohol) gels determined by neutron and light scattering. Supramol Sci 5:215CrossRefGoogle Scholar
  69. 69.
    Kanaya T, Ohkura M, Takeshita H, Kaji H, Furusaka M, Yamaoka H, Wignall GD (1995) Gelation process of poly(viny1 alcohol) as studied by small-angle neutron and light scattering. Macromolecules 28:3168CrossRefGoogle Scholar
  70. 70.
    Takeshita H, Kanaya T, Nishida K, Kaji K (2002) Small-angle neutron scattering studies on network structure of transparent and opaque PVA gels. Physica B 311:78CrossRefGoogle Scholar
  71. 71.
    Takeshita H, Kanaya T, Nishida K, Kaji K (1999) Gelation process and phase separation of PVA solutions as studied by a light scattering technique. Macromolecules 32:7815CrossRefGoogle Scholar
  72. 72.
    Ohkura M, Kanaya T, Kaji K (1992) Gels of poly(vinyl alcohol) from dimethyl sulphoxide/water solutions. Polymer 33:3686–3690CrossRefGoogle Scholar
  73. 73.
    Takeshita H, Kanaya T, Nishida K, Kaji K, Takahashi T, Hashimoto M (2000) Ultra-small-angle neutron scattering studies on phase separation of poly(vinyl alcohol) gels. Phys Rev E 61:2125CrossRefGoogle Scholar
  74. 74.
    Trieu H, Qutubuddin S (1994) Polyvinyl alcohol hydrogels I: microscopic structure by freeze-etching and critical point drying techniques. Colloid Polym Sci 272:301CrossRefGoogle Scholar
  75. 75.
    Trieu H, Qutubuddin S (1995) Poly(vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties. Polymer 36:2531CrossRefGoogle Scholar
  76. 76.
    Auriemma F, De Rosa C, Triolo R (2006) Slow crystallization kinetics of poly(vinyl alcohol) in confined environment during cryotropic gelation of aqueous solutions. Macromolecules 39:9429CrossRefGoogle Scholar
  77. 77.
    Auriemma F, De Rosa C, Ricciardi R, Lo Celso F, Triolo R, Pipich V (2008) Time-resolving analysis of cryotropic gelation of water/poly(vinyl alcohol) solutions via small-angle neutron scattering. J Phys Chem B 112:816CrossRefGoogle Scholar
  78. 78.
    Cahn JW (1965) Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 42:93CrossRefGoogle Scholar
  79. 79.
    Hirotsu S, Kaneki A (1988) Dynamics of phase transition in polymer gels: studies of spinodal decomposition and pattern formation. In: Komura S, Furukawa H (eds) Dynamics of ordering process in condensed matter. Plenum, Kyoto, pp 481–486CrossRefGoogle Scholar
  80. 80.
    Takeshita H, Kanaya T, Nishida K, Kaji K (2001) Spinodal decomposition and syneresis of PVA gel. Macromolecules 34:7894CrossRefGoogle Scholar
  81. 81.
    Wunderlich B (1980) Macromolecular physics, crystal melting, vol 3. Academic, New YorkGoogle Scholar
  82. 82.
    Grebowicz J, Cheng SZD, Wunderlich B (1986) Kinetics of transitions involving condis crystals. J Polym Sci Part B Polym Phys 24:675CrossRefGoogle Scholar
  83. 83.
    Cheng SZD (1988) Kinetics of mesophase transitions in thermotropic copolyesters. 1: calorimetric study. Macromolecules 21:2475CrossRefGoogle Scholar
  84. 84.
    Bao QB, Higham PA (1991) Hydrogel intervertebral disc nucleus. US5047055Google Scholar
  85. 85.
    Hyon SH, Cha WI, Oka M, Ikada Y (1993) Shock absorbing ability of joint materials. III. Effect of molecular weight and saturated water content on the loss factor of PVA-hydrogels. Polym Prep Jpn (Eng Ed) 42:71Google Scholar
  86. 86.
    Mano I, Goshima H, Nambu M (1986) New polyvinyl alcohol gel materials for MRI phantoms. Magn Reson Med 3:921CrossRefGoogle Scholar
  87. 87.
    Kharine A, Manohar S, Seeton R, Kolkman RGM, Bolt RA, Steenbergen W, de Mul FFM (2003) Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. Phys Med Biol 48:357CrossRefGoogle Scholar
  88. 88.
    Takamura A, Ishii T, Hidaka H (1992) Drug release from poly(vinyl alcohol) gel prepared by freeze-thaw procedure. J Control Release 20:21CrossRefGoogle Scholar
  89. 89.
    Peppas NA, Scott JE (1992) Controlled release from poly(vinyl alcohol) gels prepared by freezing-thawing processes. J Control Release 18:95CrossRefGoogle Scholar
  90. 90.
    Ficek BJ, Peppas NA (1993) Novel preparation of poly (vinyl alcohol) microparticles without crosslinking agent for controlled drug delivery of proteins. J Control Release 27:259CrossRefGoogle Scholar
  91. 91.
    Gutiérrez MC, Aranaz I, Ferrer ML, del Monto F (2010) Productions and properties of poly(vinyl alcohol) hydrogels: recent developments. In: Mattiasson B, Kumar A, Galaev IY (eds) Macroporous polymers: production, properties and biological/biomedical applications. CRC, Boca Raton, p 83Google Scholar
  92. 92.
    Podorozhko EA, D’yakonova EA, Kolosova OY, Klabukov LF, Lozinsky VI (2012) A study of cryostructuring of polymer systems. 34. Poly(vinyl alcohol) composite cryogels filled with microparticles of polymer dispersion. Colloid J 74:708CrossRefGoogle Scholar
  93. 93.
    Podorozhko EA, Vorontsova TV, Lozinsky VI (2012) Study of cryostructuring of polymer systems. 32. Morphology and physicochemical properties of composite poly(vinyl alcohol) cryogels filled with hydrophobic liquid microdroplets. Colloid J 74:110CrossRefGoogle Scholar
  94. 94.
    Lozinsky VI, Zubov AL, Titova EF (1997) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier. Enzyme Microb Technol 20:182CrossRefGoogle Scholar
  95. 95.
    Podorozhko EA, Korlyukov AA, Lozinsky VI (2010) Cryostructuring of polymer systems. XXX. Poly(vinyl alcohol)-based composite cryogels filled with small disperse oil droplets: a gel system capable of mechanically induced releasing of the lipophilic constituents. J Appl Polym Sci 117:1332.Google Scholar
  96. 96.
    Abitbol T, Johnstone T, Quinn TM, Gray DG (2011) Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Mater 7:2373CrossRefGoogle Scholar
  97. 97.
    Pan Y, Xiong D, Chen X (2007) Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J Mater Sci 42:5129CrossRefGoogle Scholar
  98. 98.
    Lozinsky VI, Damshkaln LG (2001) Study of cryostructuration of polymer systems. XX. Foamed poly(vinyl alcohol) cryogels. J Appl Polym Sci 82:1609CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Claudio De Rosa
    • 1
  • Finizia Auriemma
    • 1
    Email author
  • Rocco Di Girolamo
    • 1
  1. 1.Dipartimento di Scienze ChimicheUniversità di Napoli Federico IINapoliItaly

Personalised recommendations