Synthesis and Structure–Property Relationships of Cryogels

  • Oguz OkayEmail author
  • Vladimir I. Lozinsky
Part of the Advances in Polymer Science book series (POLYMER, volume 263)


Polymeric gels belong to the most important class of functional polymers in modern biotechnology. They are useful materials for drug delivery systems, artificial organs, separation operations in biotechnology, processing of agricultural products, on–off switches, sensors, and actuators. Despite this fact and considerable research in this field, the design and control of gel-based devices still present some problems due to the their poor mechanical performance and slow rate of response to external stimuli. Cryogelation techniques discovered more than 30 years ago overcome these limitations by producing macroporous gels with high toughness and superfast responsivity. This chapter discusses how and why the properties of gels significantly alter upon transition from homogeneous gelation to a cryogelation regime. The formation and structure–property relationships of cryogels starting from monovinyl–divinyl monomers, as well as from linear polymer chains, are reviewed using examples from the recent literature. Some novel cryogels with a wide range of tunable properties and their applications are also presented in detail. These include DNA cryogels for the removal of carcinogens from aqueous environments, silk fibroin cryogels as mechanically strong scaffolds for bone tissue engineering applications, poly(acrylic acid) cryogels as self-oscillation systems, and rubber cryogels as reusable oil sorbent for the removal of oil spill from seawater.


Cryogels Porosity formation Gelation Elasticity Swelling 



Dissociation degree


Polymer–solvent interaction parameter


Deformation ratio


Effective crosslink density


Nominal stress


Compressive stress


Critical stress corresponding to the plateau regime


Acrylic acid




2-Acrylamido-2-methylpropane sulfonic acid sodium salt


Ammonium persulfate




1,4-Butanediol diglycidyl ether


Monomer concentration in the unfrozen zones




Initial concentration of the monomeric or the polymeric precursors


Rubber concentration


Fibroin concentration




Dimethyl sulfoxide


Deoxyribonucleic acid


Young’s modulus


Ethylene glycol diglycidyl ether


Ethidium bromide


Effective charge density


Shear modulus


2-Hydroxyethyl methacrylate


Reduced flow rate


Normalized gel mass with respect to its equilibrium swollen mass




Total porosity or the volume fraction of frozen solvent in the reaction system


Poly(acrylic acid)








Butyl rubber, a linear polyisobutylene containing small amounts of internal unsaturated groups (isoprene units)


Poly(methacrylic acid)




Swollen state porosity




Poly(vinyl alcohol)


Equilibrium volume swelling ratio (with respect to dry state)


Equilibrium weight swelling ratio (with respect to dry state)


Sodium acrylate


Styrene-butadiene rubber


Scanning electron microscopy




Cryogelation temperature


Molar volume of solvent


Volume swelling ratio with respect to the after preparation state of gels


Total volume of open pores



This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK, TBAG–211 T044) and the Russian Foundation for Basic Research (RFBR, 12-03-91371). O.O. thanks the Turkish Academy of Sciences (TUBA) for the partial support.


  1. 1.
    Gerlach G, Arndt KF (2009) Hydrogel sensors and actuators. In: Urban G (ed) Springer series on chemical sensors and biosensors, vol 6. Springer, BerlinGoogle Scholar
  2. 2.
    Shibayama M, Tanaka T (1993) Adv Polym Sci 109:1Google Scholar
  3. 3.
    Galaev I, Mattiasson B (2008) Smart polymers. Applications in biotechnology and biomedicine, 2nd edn. CRC Press, NYGoogle Scholar
  4. 4.
    Suzuki M, Hirasa O (1993) Adv Polym Sci 110:241Google Scholar
  5. 5.
    Tanaka T, Fillmore DJ (1979) J Chem Phys 70:1214Google Scholar
  6. 6.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155Google Scholar
  7. 7.
    Okumura Y, Ito K (2001) Adv Mater 13:485Google Scholar
  8. 8.
    Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Macromolecules 44:4997Google Scholar
  9. 9.
    Haraguchi K, Takehisa T (2002) Adv Mater 14:1120Google Scholar
  10. 10.
    Huang T, Xu H, Jiao K, Zhu L, Brown HR, Wang H (2007) Adv Mater 19:1622Google Scholar
  11. 11.
    Okay O (2000) Prog Polym Sci 25:711Google Scholar
  12. 12.
    Seidl J, Malinsky J, Dusek K, Heitz W (1967) Adv Polym Sci 5:113Google Scholar
  13. 13.
    Dusek K (1982) In: Haward RN (ed) Developments in polymerization, vol 3, Applied Science, London, p 143Google Scholar
  14. 14.
    Sayil C, Okay O (2001) Polymer 42:7639Google Scholar
  15. 15.
    Vainerman ES, Lozinsky VI, Rogozhin SV (1981) Colloid Polym Sci 259:1198Google Scholar
  16. 16.
    Lozinsky VI, Vainerman ES, Titova EF, Belavtseva EM, Rogozhin SV (1984) Colloid Polym Sci 262:769Google Scholar
  17. 17.
    Lozinsky VI (2002) Russ Chem Rev 71:489Google Scholar
  18. 18.
    Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2002) Bioseparation 10:163Google Scholar
  19. 19.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Trends Biotechnol 21:445Google Scholar
  20. 20.
    Mattiasson B, Kumar A, Galaev IY (2010) Macroporous polymers. Production, properties, and biotechnological/biomedical applications. CRC Press, New YorkGoogle Scholar
  21. 21.
    Henderson TMA, Ladewig K, Haylock DN, McLean KM, O’Connor AJ (2013) J Mater Chem B 1:2682Google Scholar
  22. 22.
    Kirsebom H, Mattiasson B (2011) Polym Chem 2:1059Google Scholar
  23. 23.
    Ozmen MM, Dinu MV, Dragan ES, Okay O (2007) J Macromol Sci Part A 44:1195Google Scholar
  24. 24.
    Plieva FM, Karlsson M, Aguilar MR, Gomez D, Mikhalovsky S, Galaev IY (2005) Soft Matter 1:303Google Scholar
  25. 25.
    Plieva F, Huiting X, Galaev IY, Bergenstahl B, Mattiasson B (2006) J Mater Chem 16:4065Google Scholar
  26. 26.
    Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Polymer 48:195Google Scholar
  27. 27.
    Lozinsky VI, Kalinina EV, Grinberg VY, Grinberg NV, Chupov VV, Plate NA (1997) Polym Sci Ser A 39:1300Google Scholar
  28. 28.
    Kirsebom H, Rata G, Topgaard D, Mattiasson B, Galaev IY (2009) Macromolecules 42:5208Google Scholar
  29. 29.
    Kumar A, Plieva FM, Galaev IY, Mattiasson B (2003) J Immunol Methods 283:185Google Scholar
  30. 30.
    Sun X-L, He W-D, Li J, Li L-Y, Zhang B-Y, Pan T-T (2009) J Polym Sci Part A Polym Chem 47:6863Google Scholar
  31. 31.
    Bilici C, Karayel S, Demir TT, Okay O (2010) J Appl Polym Sci 118:2981Google Scholar
  32. 32.
    Zhang X-Z, Chu C-C (2003) Chem Commun 12:1446Google Scholar
  33. 33.
    Perez P, Plieva F, Gallardo A, Roman JS, Aguilar MR, Morfin I, Ehrburger-Dolle F, Bley F, Mikhalovsky S, Galaev IY, Mattiasson B (2008) Biomacromolecules 9:66Google Scholar
  34. 34.
    Zheng S, Wang T, Liu D, Liu X, Wang C, Tong Z (2013) Polymer 54:1846Google Scholar
  35. 35.
    Andac M, Plieva FM, Denizli A, Galaev IY, Mattiasson B (2008) Macromol Chem Phys 209:577Google Scholar
  36. 36.
    Ozmen MM, Okay O (2005) Polymer 46:8119Google Scholar
  37. 37.
    Petrov P, Petrova E, Tsvetanov CB (2009) Polymer 50:1118Google Scholar
  38. 38.
    Kahveci MU, Beyazkilic Z, Yagci Y (2010) J Polym Sci Part A Polym Chem 48:4989Google Scholar
  39. 39.
    Reichelt S, Abe C, Hainich S, Knolle W, Decker U, Prager A, Konieczny R (2013) Soft Matter 9:2484Google Scholar
  40. 40.
    Sun X-L, He W-D, Pan T-T, Ding Z-L, Zhang Y-J (2010) Polymer 51:110Google Scholar
  41. 41.
    Zhao Q, Sun J, Wu X, Lin Y (2011) Soft Matter 7:4284Google Scholar
  42. 42.
    Lozinsky VI, Vainerman ES, Rogozhin SV (1982) Colloid Polym Sci 260:776Google Scholar
  43. 43.
    Ivanov RV, Lozinsky VI, Noh SK, Han SS, Lyoo WS (2007) J Appl Polym Sci 106:1470Google Scholar
  44. 44.
    Lozinsky VI, Plieva FM (1998) Enzyme Microb Technol 23:227Google Scholar
  45. 45.
    Welzel PB, Grimmer M, Renneberg C, Naujox L, Zschoche S, Freudenberg U, Werner C (2012) Biomacromolecules 13:2349Google Scholar
  46. 46.
    Auriemma F, DeRosa C, Ricciardi R, Lo Celso F, Triolo R, Pipich V (2008) J Phys Chem B 112:816Google Scholar
  47. 47.
    Orakdogen N, Karacan P, Okay O (2011) React Funct Polym 71:782Google Scholar
  48. 48.
    Karacan P, Okay O (2013) React Funct Polym 73:442Google Scholar
  49. 49.
    Karakutuk I, Ak F, Okay O (2012) Biomacromolecules 13:1122Google Scholar
  50. 50.
    Ak F, Oztoprak Z, Karakutuk I, Okay O (2013) Biomacromolecules 14:719Google Scholar
  51. 51.
    Okay O, Durmaz S, Erman B (2000) Macromolecules 33:4822Google Scholar
  52. 52.
    Ceylan D, Okay O (2007) Macromolecules 40:8742Google Scholar
  53. 53.
    Dogu S, Okay O (2008) Polymer 49:4626Google Scholar
  54. 54.
    Ceylan D, Dogu S, Karacik B, Yakan S, Okay OS, Okay O (2009) Environ Sci Technol 43:3846Google Scholar
  55. 55.
    Karakutuk I, Okay O (2010) React Funct Polym 70:585Google Scholar
  56. 56.
    Tuncaboylu DC, Okay O (2010) Langmuir 26:7574Google Scholar
  57. 57.
    Pojanavaraphan T, Liu L, Ceylan D, Okay O, Magaraphan R, Schiraldi DA (2011) Macromolecules 44:923Google Scholar
  58. 58.
    Kirsebom H, Mattiasson B, Galaev IY (2009) Langmuir 25:8462Google Scholar
  59. 59.
    Ozmen MM, Okay O (2008) React Funct Polym 68:1467Google Scholar
  60. 60.
    Lozinsky VI, Vainerman ES, Korotaeva GF, Rogozhin SV (1984) Colloid Polym Sci 262:617Google Scholar
  61. 61.
    Lozinsky VI, Morozova SA, Vainerman ES, Titova EF, Shtil’man MI, Belavtseva EM, Rogozhin SV (1989) Acta Polym 40:8Google Scholar
  62. 62.
    Ivanov RV, Babushkina TA, Lozinsky VI (2005) Polym Sci Ser A 47:791Google Scholar
  63. 63.
    Ozmen MM, Okay O (2006) J Macromol Sci Part A 43:1215Google Scholar
  64. 64.
    Tripathi A, Kumar A (2011) Macromol Biosci 11:22Google Scholar
  65. 65.
    Arvidsson P, Plieva FM, Savina IN, Lozinsky VI, Fexby S, Bulow L, Galaev IY, Mattiasson B (2002) J Chromatogr A 977:27Google Scholar
  66. 66.
    Arvidsson P, Plieva FM, Lozinsky VI, Galaev IY, Mattiasson B (2003) J Chromatogr A 986:275Google Scholar
  67. 67.
    Plieva FM, Andersson J, Galaev IY, Mattiasson B (2004) J Sep Sci 27:828Google Scholar
  68. 68.
    Plieva FM, Savina IN, Deraz S, Andersson J, Galaev IY, Mattiasson B (2004) J Chromatogr B 807:129Google Scholar
  69. 69.
    Tuncaboylu DC, Okay O (2009) Eur Polym J 45:2033Google Scholar
  70. 70.
    Plieva FM, Mattiasson B (2008) Ind Eng Chem Res 47:4131Google Scholar
  71. 71.
    Yun J, Tu C, Lin D-Q, Xu L, Guo Y, Shen S, Zhang S, Yao K, Guan Y-X, Yao S-J (2012) J Chromatogr A 1247:81Google Scholar
  72. 72.
    Yun J, Dafoe JT, Peterson E, Xu L, Yao S-J (2013) J Chromatogr A 1284:148Google Scholar
  73. 73.
    Topuz F, Okay O (2009) React Funct Polym 69:273Google Scholar
  74. 74.
    Yin W, Yates MZ (2008) Langmuir 24:701Google Scholar
  75. 75.
    Gun’ko VM, Savina IN, Mikhalovsky SV (2013) Adv Colloid Int Sci 187–188:1Google Scholar
  76. 76.
    Savina IN, Tomlins PE, Mikhalovsky SV, Galaev IY (2010) Characterization of macroporous gels. In: Mattiasson B, Kumar A, Galaev IY (eds) Macroporous polymers. Production, properties, and biotechnological/biomedical applications. CRC Press, New York, p 211Google Scholar
  77. 77.
    Flory PJ (1953) Principles of polymer chemistry. NY, Cornell University Press, IthacaGoogle Scholar
  78. 78.
    Treloar LRG (1975) The physics of rubber elasticity. University Press, OxfordGoogle Scholar
  79. 79.
    Hertz H (1881) Über die Berührung Fester Elastischer Körper (on the Contact of Elastic Solids). J. Reine und Angewandte Mathematik 92:156. In: Jones DE, Schott GA (eds) (1896) Miscellaneous papers b H. Hertz. Macmillan, LondonGoogle Scholar
  80. 80.
    Knaebel A, Rebre SR, Lequeux F (1997) Polym Gels Networks 5:107Google Scholar
  81. 81.
    Briscoe BJ, Liu KK, Williams DR (1998) J Colloid Int Sci 200:256Google Scholar
  82. 82.
    Barquins M, Shanahan MER (1997) Int J Adhes Adhes 17:313Google Scholar
  83. 83.
    Lozinsky VI, Zubov AL, Titova EF (1996) Enzyme Microb Technol 18:561Google Scholar
  84. 84.
    Lu W-M, Tung K-L, Hung S-M, Shiau J-S, Hwang K-J (2001) Powder Techn 116:1Google Scholar
  85. 85.
    Funke W, Okay O, Joos-Muller B (1998) Adv Polym Sci 36:139Google Scholar
  86. 86.
    Oppermann W, Rose S, Rehage G (1985) Br Polym J 17:175Google Scholar
  87. 87.
    Baker JP, Hong LH, Blanch HW, Prausnitz JM (1994) Macromolecules 27:1446Google Scholar
  88. 88.
    Naghash HJ, Okay O (1996) J Appl Polym Sci 60:971Google Scholar
  89. 89.
    Gundogan N, Okay O, Oppermann W (2004) Macromol Chem Phys 205:814Google Scholar
  90. 90.
    Bromberg L, Grosberg AY, Matsuo ES, Suzuki Y, Tanaka T (1997) J Chem Phys 106:2906Google Scholar
  91. 91.
    Wolfe J, Bryant G, Koster KL (2002) Cryo-Lett 23:157Google Scholar
  92. 92.
    Franks F (1986) Cryo-Lett 7:207Google Scholar
  93. 93.
    Watanabe K, Mizoguchi M (2002) Cold Reg Sci Technol 34:103Google Scholar
  94. 94.
    Okay O, Durmaz S (2002) Polymer 43:1215Google Scholar
  95. 95.
    Loo S-L, Krantz WB, Lim T-T, Fane AG, Hu X (2013) Soft Matter 9:224Google Scholar
  96. 96.
    Ceylan D, Ozmen MM, Okay O (2006) J Appl Polym Sci 99:319Google Scholar
  97. 97.
    Okoroafor EU, Newborough M, Highgate D, Augood P (1998) J Phys D Appl Phys 31:3120Google Scholar
  98. 98.
    Patil RD, Mark JE, Apostolov A, Vassileva E, Fakirov S (2000) Eur Polym J 36:1055Google Scholar
  99. 99.
    Zhang H, Cooper AI (2007) Adv Mater 19:1529Google Scholar
  100. 100.
    Zhang H, Edgar D, Murray P, Rak-Raszewska A, Glennon-Alty L, Cooper AI (2008) Adv Funct Mater 18:222Google Scholar
  101. 101.
    Zhang X-Z, Chu C-C (2003) J Mater Chem 13:2457Google Scholar
  102. 102.
    Kirsebom H, Topgaard D, Galaev IY, Mattiasson B (2010) Langmuir 26:16129Google Scholar
  103. 103.
    Lozinsky VI, Zubov AL, Kulakova VK, Titova EF, Rogozhin SV (1992) J Appl Polym 44:1423Google Scholar
  104. 104.
    Lozinsky VI, Bakeeva IV, Presnyak EP, Damshkaln LG, Zubov VP (2007) J Appl Polym Sci 105:2689Google Scholar
  105. 105.
    Lozinsky VI, Savina IN (2002) Colloid J 64:336Google Scholar
  106. 106.
    Podorozhko EA, D’yakonova EA, Kolosova O, Klabukova LF, Lozinsky VI (2012) Colloid J 74:708Google Scholar
  107. 107.
    Dosseh G, Xia Y, Alba-Simionesco C (2003) J Phys Chem B 107:6445Google Scholar
  108. 108.
    Xu J, LaBean TH, Craig SL (2004) In: Ciferri A (ed) Supramolecular polymers, CRC Press, New York, Chapter 12, p 445Google Scholar
  109. 109.
    Bloomfield VA, Crothers DM, Tinoco I (2000) Nucleic acids: structures, properties, and functions. University Science, SausalitoGoogle Scholar
  110. 110.
    Okay O (2011) J Polym Sci B Polym Phys 49:551Google Scholar
  111. 111.
    Topuz F, Okay O (2008) Macromolecules 41:8847Google Scholar
  112. 112.
    Topuz F, Okay O (2009) Biomacromolecules 10:2652Google Scholar
  113. 113.
    Murakami Y, Maeda M (2005) Biomacromolecules 6:2927Google Scholar
  114. 114.
    Ishizuka N, Hashimoto Y, Matsuo Y, Ijiro K (2006) Colloids Surf A 284–285:440Google Scholar
  115. 115.
    Amiya T, Tanaka T (1987) Macromolecules 20:1162Google Scholar
  116. 116.
    Horkay F, Basser PJ (2004) Biomacromolecules 5:232Google Scholar
  117. 117.
    Costa D, Miguel MG, Lindman B (2007) J Phys Chem B 111:8444Google Scholar
  118. 118.
    Costa D, Miguel MG, Lindman B (2010) Adv Coll Int Sci 158:21Google Scholar
  119. 119.
    Orakdogen N, Erman B, Okay O (2010) Macromolecules 43:1530Google Scholar
  120. 120.
    LePecq J-B, Yot P, Paoletti C (1964) C R Acad Sci 259:1786Google Scholar
  121. 121.
    Waring MJ (1965) J Mol Biol 13:269Google Scholar
  122. 122.
    Pohl FM, Jouin TM, Baehr W, Holbrook JJ (1972) Proc Natl Acad Sci USA 69:3805Google Scholar
  123. 123.
    Celedon A, Wirtz D, Sun S (2010) J Phys Chem B 114:16929Google Scholar
  124. 124.
    Sobell HM, Tsai CC, Jain SC, Gilbert SG (1977) J Mol Biol 114:333Google Scholar
  125. 125.
    Berman HM, Young PR (1981) Annu Rev Biophys Bioeng 10:87Google Scholar
  126. 126.
    Faulhaber K, Granzhan A, Ihmels H, Otto D, Thomas L, Wells S (2011) Photobiol Sci 10:1535Google Scholar
  127. 127.
    Vepari C, Kaplan DL (2007) Prog Polym Sci 32:991Google Scholar
  128. 128.
    Vollrath F, Porter D (2009) Polymer 50:5623Google Scholar
  129. 129.
    Hardy JG, Romer LM, Scheibel TR (2008) Polymer 49:4309Google Scholar
  130. 130.
    Murphy AR, Kaplan DL (2009) J Mater Chem 19:6443Google Scholar
  131. 131.
    Vlierberghe SV, Dubruel P, Schacht E (2011) Biomacromolecules 12:1387Google Scholar
  132. 132.
    Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Nucleic Acids Res 28:2413Google Scholar
  133. 133.
    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) J Biomed Mater Res 54:139Google Scholar
  134. 134.
    Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Biomacromolecules 3:1233Google Scholar
  135. 135.
    Jin HJ, Kaplan DL (2003) Nature 424:1057Google Scholar
  136. 136.
    Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474Google Scholar
  137. 137.
    Nazarov R, Jin HJ, Kaplan DL (2004) Biomacromolecules 5:718Google Scholar
  138. 138.
    Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, Park YH (2008) Biotechnol Lett 30:405Google Scholar
  139. 139.
    Hutmacher DW (2000) Biomaterials 21:2529Google Scholar
  140. 140.
    Li MZ, Lu SZ, Wu ZY, Yan HJ (2001) J Appl Polym Sci 79:2185Google Scholar
  141. 141.
    Li MZ, Wu ZY, Zhang CS, Lu SZ, Yan HJ, Huang D, Ye HL (2001) J Appl Polym Sci 79:2192Google Scholar
  142. 142.
    Lv Q, Feng QL (2006) J Mater Sci Mater Med 17:1349Google Scholar
  143. 143.
    Liu X, Ma PX (2004) Ann Biomed Eng 32:477Google Scholar
  144. 144.
    Zhang Q, Yan S, Li M (2009) Materials 2:2276Google Scholar
  145. 145.
    Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Biomaterials 26:2775Google Scholar
  146. 146.
    Min S, Gao X, Liu L, Tian L, Zhu L, Zhang H, Yao JJ (2009) Biomater Sci 20:1961Google Scholar
  147. 147.
    Chen X, Knight DP, Shao ZZ, Vollrath F (2002) Biochemistry 41:14944Google Scholar
  148. 148.
    Mo C, Holland C, Porter D, Shao Z, Vollrath F (2009) Biomacromolecules 10:2724Google Scholar
  149. 149.
    Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Biomacromolecules 5:786Google Scholar
  150. 150.
    Ayub ZH, Arai M, Hirabayashi K (1993) Biosci Biotech Biochem 57:1910Google Scholar
  151. 151.
    Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1997) Adv Mater 9:175Google Scholar
  152. 152.
    Luo Y, Epstein IR (1991) J Am Chem Soc 113:1518Google Scholar
  153. 153.
    Rabai G, Orban M, Epstein IR (1990) Acc Chem Res 23:258Google Scholar
  154. 154.
    Yoshida R, Ichijo H, Hakuta T, Yamaguchi T (1995) Macromol Rapid Commun 16:305Google Scholar
  155. 155.
    Crook CJ, Smith A, Jones RAL, Ryan AJ (2002) Phys Chem Chem Phys 4:1367Google Scholar
  156. 156.
    Edblom EC, Luo Y, Orban M, Kustin K, Epstein IR (1989) J Phys Chem 93:2722Google Scholar
  157. 157.
    Ende MTA, Peppas NA (1996) J Appl Polym Sci 59:673Google Scholar
  158. 158.
    National Research Council (2003) Oil in the sea III: inputs, fates, and effects. National Academies Press, Washington, DCGoogle Scholar
  159. 159.
    Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) J Porous Mat 10:159Google Scholar
  160. 160.
    Valderrama C, Gamisans X, Heras FX, Cortina JL, Farran A (2007) React Funct Polym 67:1515Google Scholar
  161. 161.
    Sun X-F, Sun R, Sun J-X (2002) J Agric Food Chem 50:6428Google Scholar
  162. 162.
    Deschamps G, Caruel H, Borredon M-E, Bonnin C, Vignoles C (2003) Environ Sci Technol 37:1013Google Scholar
  163. 163.
    Radetic MM, Jocic DM, Jovancic PM, Petrovic ZL, Thomas HF (2003) Environ Sci Technol 37:1008Google Scholar
  164. 164.
    Wei QF, Mather RR, Fotheringham AF (2005) Bioresour Technol 96:331Google Scholar
  165. 165.
    Carmody O, Frost R, Xi Y, Kokot S (2007) Surf Sci 601:2066Google Scholar
  166. 166.
    Gardon JL (1965) In: Mark HF, Gaylord NG, Bikales NM (eds) Encyclopedia of polymer science and technology. Interscience, New Yok, vol 3, p 833Google Scholar
  167. 167.
    Barton AFM (1991) CRC handbook of solubility parameters and other cohesion parameters, second edition. CRC Press, New YorkGoogle Scholar
  168. 168.
    Stirna U, Cabulis U, Beverte I (2008) J Cell Plastics 44:139Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of ChemistryIstanbul Technical UniversityIstanbulTurkey
  2. 2.Laboratory for Cryochemistry of (Bio)Polymers, A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations