Advertisement

Basic Principles of Cryotropic Gelation

  • Vladimir I. LozinskyEmail author
  • Oguz Okay
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 263)

Abstract

Polymeric cryogels are the gel systems formed in moderately frozen solutions or colloidal dispersions of precursors potentially capable of gelling. Polymeric cryogels are of growing practical interest in various applied areas. The fabrication of any cryogel includes the following necessary stages: preparation of the feed system, its freezing, incubation of the gelation system in a frozen state, and thawing of the frozen sample. The nature of gel precursors, their concentration in the initial feed, and the conditions of each of the stages affect the physicochemical properties and porous morphology of the resulting cryogels. Certain specific effects are inherent in the processes of cryotropic gel formation, namely, apparent decrease in the critical concentration of gelation, acceleration of gel formation over a certain range of negative temperatures, a bell-shaped temperature dependence of the cryotropic gelation efficiency, and generation of the specific porosity peculiar to cryogels. This chapter presents the basic principles of cryotropic gelation processes and also discusses the factors influencing the properties of various types of cryogels.

Keywords

Cryotropic gelation Unfrozen liquid microphase Freezing Frozen storage Defrosting 

Abbreviations

CCG

Critical concentration of gelation

CTAB

Cetyltrimethylammonium bromide

DMSO

Dimethylsulfoxide

GuAr

Gum arabic

LCST

Lower critical solution temperature

NMR

Nuclear magnetic resonance

PVA

Poly(vinyl alcohol)

SEM

Scanning electron microscopy

UCST

Upper critical solution temperature

UFLMP

Unfrozen liquid microphase

VA

Vinyl alcohol

VAc

Vinyl acetate

Notes

Acknowledgements

The work was supported by the joint Russian–Turkish grant from the Russian Foundation for Basic Research (Project # 12-03-91371-CT-a) and the Scientific and Technical Research Council of Turkey (Project # 211 T044). The authors also thank Drs. Andrey Ryabev and Roman Ivanov for the valuable help in the artwork preparation.

References

  1. 1.
    Lozinsky VI (2014) A brief history of polymeric cryogels. In: Okay O (ed) Polymeric cryogels: macroporous gels with remarkable properties. Advances in Polymer Science, vol 263. Springer, HeidelbergGoogle Scholar
  2. 2.
    Papkov SP (1974) Gel-like state of polymers. Khimiya, Moscow, in RussianGoogle Scholar
  3. 3.
    Kudela V (1987) Encyclopedia of polymer science and engineering, vol. 7. Wiley, New York, p 783Google Scholar
  4. 4.
    Tanaka T (1987) In: Nicolini C (ed) Structure and dynamics of biopolymers. Dordrecht: M. Nijhoff, p 237Google Scholar
  5. 5.
    Rogovina LZ, Vasil’ev VG, Braudo EE (2008) Polym Sci 50C:85Google Scholar
  6. 6.
    Nishinari K (2009) Prog Colloid Polym Sci 136:87Google Scholar
  7. 7.
    Lozinsky VI (1994) DSc Thesis, Institute of Organoelement Compounds, Russian Academy of Sciences. Moscow, in RussianGoogle Scholar
  8. 8.
    Lozinsky VI (2002) Russ Chem Revs 71:489Google Scholar
  9. 9.
    Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2001) Bioseparation 10:163Google Scholar
  10. 10.
    Nikonorov VV, Ivanov RV, Kil’deeva NR, Bulatnikova LN, Lozinsky VI (2010) Polym Sci 52A:828Google Scholar
  11. 11.
    Lozinsky VI, Vainerman ES, Rogozhin SV (1982) SU Patent 1,008,214Google Scholar
  12. 12.
    Rogozhin SV, Lozinsky VI, Vainerman ES, Domotenko LV, Mamtsis AM, Ivanova SA, Shtil’man MI, Korshak VV (1984) Doklady Akademii nauk SSSR 278:129–133, in RussianGoogle Scholar
  13. 13.
    Labudzińska A, Ziabicki A (1971) Koll Z u Z Polym 243:21Google Scholar
  14. 14.
    Schulze WE, Yu DT, MacMaters MM (1964) Stärke 16:41Google Scholar
  15. 15.
    Schierbaum F, Richter M (1964) Nahrung 8:487, in GermanGoogle Scholar
  16. 16.
    Blažek L, Dvoržak E, Myšik S (1964) Koll Zhurn 26:657, in RussianGoogle Scholar
  17. 17.
    Neiman RE (1967) Coagulation of synthetic latexes. Voronezh State University, Voronezh, pp 148–159, in RussianGoogle Scholar
  18. 18.
    Jellinek HHG, Fok SY (1967) Makromol Chem 104:18Google Scholar
  19. 19.
    Lozinsky VI, Korneeva MN, Vainerman ES, Rogozhin SV (1983) Doklady Akademii nauk SSSR 270:101, in RussianGoogle Scholar
  20. 20.
    Lozinsky VI, Vainerman ES, Titova EF, Belavtseva EM, Rogozhin SV (1984) Colloid Polym Sci 262:769Google Scholar
  21. 21.
    Belavtseva EM, Titova EF, Lozinsky VI, Vainerman ES, Rogozhin SV (1984) Colloid Polym Sci 262:775–779Google Scholar
  22. 22.
    Lozinsky VI, Vainerman ES, Ivanova SA, Titova EF, Shtil’man MI, Belavtseva EM, Rogozhin SV (1986) Acta Polym 37:142Google Scholar
  23. 23.
    Lozinsky VI, Morozova SA, Vainerman ES, Titova EF, Shtil’man MI, Belavtseva EM, Rogozhin SV (1989) Acta Polym 40:8Google Scholar
  24. 24.
    Ozmen MM, Okay O (2008) React Funct Polym 68:1467Google Scholar
  25. 25.
    Ozmen MM, Dinu MV, Okay O (2008) Polym Bull 60:169Google Scholar
  26. 26.
    Lozinsky VI, Vainerman ES, Rogozhin SV (1982) Colloid Polym Sci 260:776Google Scholar
  27. 27.
    Lozinsky VI, Vainerman ES, Korotaeva GF, Rogozhin SV (1984) Colloid Polym Sci 262:617Google Scholar
  28. 28.
    Lozinsky VI, Golovina TO, Gusev DG (2000) Polymer 41:35Google Scholar
  29. 29.
    Ivanov RV, Lozinsky VI, Noh SK, Han SS, Lyoo WS (2007) J Appl Polym Sci 106:1470Google Scholar
  30. 30.
    Tuncaboylu DC, Okay O (2009) Eur Polym J 45:2033Google Scholar
  31. 31.
    Orakdogen N, Karacan P, Okay O (2011) React Funct Polym 71:782Google Scholar
  32. 32.
    Nikonorov VV, Ivanov RV, Kil’deeva NR, Lozinsky VI (2011) Polym Sci 53A:1150Google Scholar
  33. 33.
    Bloch K, Lozinsky VI, Galaev IY, Yavriyanz K, Vorobeychik M, Azarov D, Damshkaln LG, Mattiasson D, Vardi P (2005) J Biomed Mater Res 75A:802Google Scholar
  34. 34.
    Lozinsky VI, Damshkaln LG, Bloch KO, Vardi P, Grinberg NV, Burova TV, Grinberg VY (2008) J Appl Polym Sci 108:3046Google Scholar
  35. 35.
    Flink JM, Johansen A (1985) Biotechnol Lett 7(10):765Google Scholar
  36. 36.
    Johansen A, Flink JM (1986) Biotechnol Lett 8(2):121Google Scholar
  37. 37.
    Vainerman ES, Lozinsky VI, Rogozhin SV, Raskina LP, Shapiro LA, Yakubovich VS, Bronshtein VY (1983) SU Patent 1:171,474Google Scholar
  38. 38.
    Vainerman ES, Lozinsky VI, Rogozhin SV, Raskina LP, Shapiro LA, Yakubovich VS, Shenker MB, Komissarova AL, Potapov VD, Gudochkova VM, Atyasova NM, Ivanova GA (1983) SU Patent 1,171,476Google Scholar
  39. 39.
    Zhang H, Cooper AI (2007) Adv Mater 19:1529Google Scholar
  40. 40.
    Gutiérrez MC, Ferrer ML, del Monte F (2008) Chem Mater 20:634Google Scholar
  41. 41.
    Franks F (1981) In: Morris GJ, Clarke A (eds) Effects of low temperatures on biological membranes. Academic, New York 3Google Scholar
  42. 42.
    Luyet BJ (1966) In: Meryman HT (ed) Cryobiology. Academic, New York, 115Google Scholar
  43. 43.
    Libbrecht KG (2005) Rep Prog Phys 68:855Google Scholar
  44. 44.
    Lozinsky VI, Damshkaln LG, Shaskol’skii BL, Babushkina TA, Kurochkin IN, Kurochkin II (2007) Colloid J 69:747Google Scholar
  45. 45.
    Tuncaboylu DC, Okay O (2010) Langmuir 26:7574Google Scholar
  46. 46.
    Ak F, Oztoprak Z, Karakutuk I, Okay O (2013) Biomacromolecules 14:719Google Scholar
  47. 47.
    Okay O, Lozinsky VI (2014) Synthesis and structure–property relationships of cryogels. In: Okay O (ed) Polymeric cryogels: macroporous gels with remarkable properties. Advances in polymer science, vol 263. Springer, HeidelbergGoogle Scholar
  48. 48.
    Lozinsky VI, Damshkaln LG, Kurochkin IN, Kurochkin II (2012) Colloid J 74:319Google Scholar
  49. 49.
    Ivanov RV, Lozinsky VI (2006) Polym Sci 48A:1232Google Scholar
  50. 50.
    Gusev DG, Lozinsky VI, Bakhmutov VI (1993) Eur Polym J 29:49Google Scholar
  51. 51.
    Vonnegut B, Chessin H (1971) Science 174:945Google Scholar
  52. 52.
    Kirsebom H, Rata G, Topgaard D, Mattiasson B, Galaev IY (2008) Polymer 49:3855Google Scholar
  53. 53.
    Zheng L, Sun DW (2006) Trends Food Sci Technol 17:16Google Scholar
  54. 54.
    Sergeev GB, Batyuk VA, Stepanov MB, Sergeev BM (1973) Doklady Akademii nauk SSSR 213:891, in RussianGoogle Scholar
  55. 55.
    Grant NH, Clark DE, Alburn HE (1961) J Am Chem Soc 83:4476Google Scholar
  56. 56.
    Grant NH, Clark DE, Alburn HE (1962) J Am Chem Soc 84:876Google Scholar
  57. 57.
    Butler AR, Bruice TC (1964) J Am Chem Soc 86:313Google Scholar
  58. 58.
    Bruice TC, Butler AR (1964) J Am Chem Soc 86:4104Google Scholar
  59. 59.
    Pincock RE, Kiovsky TE (1965) J Am Chem Soc 87:2072Google Scholar
  60. 60.
    Grant NH, Clark DE, Alburn HE (1966) J Am Chem Soc 88:4071Google Scholar
  61. 61.
    Pincock RE, Kiovsky TE (1966) J Chem Educ 43:358Google Scholar
  62. 62.
    Pincock RE (1969) Acc Chem Res 2:97Google Scholar
  63. 63.
    Sergeev GB, Batyuk VA (1976) Russ Chem Rev 45:391Google Scholar
  64. 64.
    Batyuk VA (1987) The chemistry of low temperatures and cryochemical technology. Moscow State University, Moscow, p 163, in RussianGoogle Scholar
  65. 65.
    Ivanov RV, Babushkina TA, Lozinsky VI (2005) Polymer Sci 47A:791Google Scholar
  66. 66.
    Kuntz ID (1971) J Am Chem Soc 93:514Google Scholar
  67. 67.
    Kvlividze VI, Pylova MB (1977) Kolloidn zhurn 39:1167, in RussianGoogle Scholar
  68. 68.
    Katayama S, Fujiwara S (1980) J Phys Chem 84:2320Google Scholar
  69. 69.
    Suzuki E, Nagashima N (1982) Bull Chem Soc Jpn 55:2730Google Scholar
  70. 70.
    Ogino K, Sato H (1995) J Polym Sci Polym Phys 33:445Google Scholar
  71. 71.
    Masuda K, Horii F (1998) Macromolecules 31:5810Google Scholar
  72. 72.
    Martin DR, Ablett S, Darke A, Sutton RL, Sahagian M (1999) J Food Sci 64:46Google Scholar
  73. 73.
    Mil’ EM, Kovarskii AL, Vasserman AM (1973) Izv AN SSSR Ser khim 10:2211, in RussianGoogle Scholar
  74. 74.
    Mikhalev OI, Yakovleva IV, Trofimov VI, Shapiro AB (1985) Cryo Lett 6:245Google Scholar
  75. 75.
    Mikhalev OI, Karpov IN, Kazarova EB, Alfimov MV (1989) Chem Phys Lett 164:96Google Scholar
  76. 76.
    Mikhalev OI, Serpinski M, Lozinsky VI, Kapanin PV, Chkeidze II, Alfimov MV (1991) Cryo Lett 12:197Google Scholar
  77. 77.
    Smith P, Pennings AJ (1974) Polymer 15:413Google Scholar
  78. 78.
    Gusev DG, Lozinsky VI, Vainerman ES, Bakhmutov VI (1990) Magn Reson Chem 28:651Google Scholar
  79. 79.
    Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Macromolecules 37:9510Google Scholar
  80. 80.
    Kaetsu I (1993) Adv Polym Sci 105:81Google Scholar
  81. 81.
    Zhang XZ, Zhuo RX (1999) Macromol Rapid Commun 20:229Google Scholar
  82. 82.
    Kumakura M (2001) Polym Adv Technol 12:415Google Scholar
  83. 83.
    Yao K, Shen S, Yun J, Wang L, He X, Yu X (2006) Chem Eng Sci 61:6701Google Scholar
  84. 84.
    Plieva FM, Galaev IY, Mattiasson B (2007) J Sep Sci 30:1657Google Scholar
  85. 85.
    Reichelt S, Abe C, Hainich S, Knolle W, Decker U, Prager A, Konieczny R (2013) Soft Matter 9:2484Google Scholar
  86. 86.
    Lozinsky VI, Golovina TO, Vainerman ES, Rogozhin SV (1989) Polym Sci USSR 31A:367Google Scholar
  87. 87.
    Petrov P, Petrova E, Tchorbanov B, Tsvetanov CB, Reiss G (2007) Polymer 48:4943Google Scholar
  88. 88.
    Liu X, Hu Y, Zou J, Chai, Li B (2013) Appl Mech Mater 295–298:1368Google Scholar
  89. 89.
    Watase M, Nishinari K, Nambu M (1983) Polym Commun 24:52Google Scholar
  90. 90.
    Watase M, Nishinari K (1983) Polym Commun 24:270Google Scholar
  91. 91.
    Watase M, Nishinari K, Ogino K, Nambu M (1983) Polym Commun 24:345Google Scholar
  92. 92.
    Lozinsky VI, Vainerman ES, Domotenko LV, Mamtsis AM, Titova EF, Belavtseva EM, Rogozhin SV (1986) Colloid Polym Sci 264:19Google Scholar
  93. 93.
    Domotenko LV, Lozinsky VI, Vainerman ES, Rogozhin SV (1988) Polym Sci USSR 30A:1758Google Scholar
  94. 94.
    Lozinsky VI, Domotenko LV, Vainerman ES, Rogozhin SV (1989) Polym Sci USSR 31A:1983Google Scholar
  95. 95.
    Lozinsky VI, Vainerman ES, Domotenko LV, Blumenfel'd AL, Rogov VV, Barkovskaya EN, Fedin EI, Rogozhin SV (1989) Colloid J USSR 51:592Google Scholar
  96. 96.
    Konstantinova NR, Lozinsky VI (1997) Food Hydrocolloids 11:113Google Scholar
  97. 97.
    Damshkaln LG, Simenel IA, Lozinsky VI (1999) J Appl Polym Sci 74:1978Google Scholar
  98. 98.
    Lozinsky VI, Damshkaln LG, Brown CRT, Norton IT (2000) J Appl Polym Sci 75:1740Google Scholar
  99. 99.
    Lozinsky VI, Damshkaln LG (2000) J Appl Polym Sci 77:2017Google Scholar
  100. 100.
    Lozinsky VI, Damshkaln IG, Brown R, Norton IT (2000) Polym Int 49:1434Google Scholar
  101. 101.
    Lozinsky VI, Damshkaln LG, Brown CRT, Norton IT (2002) J Appl Polym Sci 83:1658Google Scholar
  102. 102.
    Zeira A, Nussinovich A (2004) J Texture Stud 34:561Google Scholar
  103. 103.
    Elowsson L, Kirsebom H, Carmignac V, Durbeej M, Mattiasson B (2012) J Mater Sci Mater Med 23:2489Google Scholar
  104. 104.
    Lozinsky VI, Ivanov RV, Kalinina EV, Timofeeva GI, Khokhlov AR (2001) Macromol Rapid Commun 22:1441Google Scholar
  105. 105.
    Lozinsky VI, Ivanov RV (2003) In: Monakov YB (ed) Synthesis and modification of polymers. Khimiya, Moscow, p 68, in RussianGoogle Scholar
  106. 106.
    Zaborina OE, Buzin MI, Lozinsky VI (2012) Polym Sci 54B:354Google Scholar
  107. 107.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Trends Biotechnol 21:445Google Scholar
  108. 108.
    Ferrero C, Martino MN, Zaritzky NE (1993) Int J Food Sci Technol 17:191Google Scholar
  109. 109.
    Lozinsky VI, Damshkaln LG, Brown R, Norton IT (2000) J Appl Polym Sci 78:371Google Scholar
  110. 110.
    Hyon SH, Cha WI, Ikada Y (1989) Kobunshi Ronbunshu 46:673, in JapaneseGoogle Scholar
  111. 111.
    Lozinsky VI (1998) Russ Chem Rev 67:573Google Scholar
  112. 112.
    Lozinsky VI, Plieva FM (1998) Enzyme Microb Technol 23:227Google Scholar
  113. 113.
    Lozinsky VI, Zubov AL, Savina IN, Plieva FM (2000) J Appl Polym Sci 77:1822Google Scholar
  114. 114.
    Lozinsky VI (2008) Russ Chem Bull 57:1015Google Scholar
  115. 115.
    Tanaka R, Hatakeyama T, Hatakeyama H (1998) Polym Int 45:118Google Scholar
  116. 116.
    Matusevich LN (1968) Crystallization from solutions in chemical industry. Khimiya, Moscow, p 304, in RussianGoogle Scholar
  117. 117.
    Hassan CM, Ward JH, Peppas NA (2000) Polymer 41:6729Google Scholar
  118. 118.
    Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Laupretre F (2003) Polymer 44:3375Google Scholar
  119. 119.
    Ricciardi R, Auriemma F, Rosa CD, Laupretre F (2004) Macromolecules 37:1921Google Scholar
  120. 120.
    Valentín JL, López D, Hernández R, Mijangos C, Saalwächter K (2009) Macromolecules 42:263Google Scholar
  121. 121.
    Watase M, Nishinari K, Nambu M (1983) Cryo Lett 4:197Google Scholar
  122. 122.
    Watase M (1983) Nippon Kagaku Kaisi 7:973, in JapaneseGoogle Scholar
  123. 123.
    Nagura M, Nagura M, Ishikawa H (1984) Polym Commun 25:313Google Scholar
  124. 124.
    Watase M, Nishinari K (1985) Makromol Chem 186:1081Google Scholar
  125. 125.
    Watase M, Nishinari K (1985) J Polym Sci Polym Phys 23:1803Google Scholar
  126. 126.
    Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Colloid Polym Sci 264:595Google Scholar
  127. 127.
    Nambu M (1990) Kobunshi Ronbunshu 47:695, in JapaneseGoogle Scholar
  128. 128.
    Urushizaki F, Yamaguchi H, Nakamura K, Namajiri S, Sugibayashi K, Morimoto Y (1990) Int J Pharm 58:135Google Scholar
  129. 129.
    Peppas NA, Stauffer SR (1991) J Control Release 16:305Google Scholar
  130. 130.
    Hassan CM, Peppas NA (2000) Adv Polym Sci 153:37Google Scholar
  131. 131.
    Wan WK, Campbell G, Zhang ZF, Hui AJ, Boughner DR (2002) J Biomed Mater Res 63:854Google Scholar
  132. 132.
    Sweeszkowski W, Ku DN, Bersee HEN, Kurzcydlowski KJ (2006) Biomaterials 27:1536Google Scholar
  133. 133.
    Lozinsky VI, Damshkaln LG, Kurochkin IN, Kurochkin II (2008) Colloid J 70:189Google Scholar
  134. 134.
    Roberts JD, Caserio MC (1977) Basic principles of organic chemistry, 2nd edn. W.A. Benjamin, Menlo ParkGoogle Scholar
  135. 135.
    Horkay F, Nagy M (1981) Acta Chim Acad Sci Hung 107:321Google Scholar
  136. 136.
    Peppas NA (1987) In: Peppas NA (ed) Hydrogels in biology and medicine II. CRC, Boca Raton, p 1Google Scholar
  137. 137.
    Davis BJ (1964) Ann NY Acad Sci 121:404Google Scholar
  138. 138.
    Sun K, Sehon AH (1965) Can J Chem 43:969Google Scholar
  139. 139.
    Righetti PG, Brost BSW, Snyder RS (1981) J Biochem Biophys Methods 4:347Google Scholar
  140. 140.
    Maier H, Anderson M, Karl C, Magnuson K, Whistler RL (1993) In: Whistler RL, BeMiller JN (eds) Industrial gums. Academic, San Diego, p 181Google Scholar
  141. 141.
    Richardson PH, Clark AH, Russell AL, Aymard P, Norton IT (1999) Macromolecules 32:1519Google Scholar
  142. 142.
    Dea ICM, Morris ER, Rees DA, Welsh J, Barnes HA, Price J (1977) Carbohydr Res 57:249Google Scholar
  143. 143.
    Dea ICM (1987) In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam, p 207Google Scholar
  144. 144.
    Bringham JE, Gidley MJ, Hoffmann RA, Smith CG (1994) Food Hydrocolloid 8:331Google Scholar
  145. 145.
    Lazaridou A, Biliaderis CG, Izydorczyk MS (2003) Food Hydrocolloid 17:693Google Scholar
  146. 146.
    Lazaridou A, Biliaderis CG (2004) Food Hydrocolloid 18:933Google Scholar
  147. 147.
    Richter M, Augustat S, Schierbaum F (1969) Ausgewahlte Metoden Der Starkechemie. VEB Fachbuchverlag, Leipzig, in GermanGoogle Scholar
  148. 148.
    Lozinsky VI, Vakula AV, Zubov AL (1992) Soviet Biotechnol #4:1Google Scholar
  149. 149.
    Gutiérrez MC, Aranaz I, Ferrer ML, del Monto F (2010) Production and properties of poly(vinyl alcohol) cryogels: recent developments. In: Mattiasson B, Kumar A, Galaev I (eds) Macroporous polymers: production, properties and biological/biomedical applications. CRC, Boca Raton, p 83Google Scholar
  150. 150.
    Alves MH, Jensen BEB, Smith AAA, Zelikin AN (2011) Macromol Biosci 11:1293Google Scholar
  151. 151.
    Shapiro YE (2011) Prog Polym Sci 36:1184Google Scholar
  152. 152.
    Gun’ko VM, Savina IN, Mikhalovsky SV (2013) Adv Colloid Interface Sci 186/187:1Google Scholar
  153. 153.
    Vainerman ES, Lozinsky VI, Rogozhin SV (1981) Colloid Polym Sci 259:1198–1201Google Scholar
  154. 154.
    Lozinsky VI, Golovina TO, Vainerman ES, Rogozhin SV (1989) Polym Sci USSR 31A:367Google Scholar
  155. 155.
    Ivanov RV, Lozinsky VI, Noh SK, Lee YR, Han SS, Lyoo WS (2008) J Appl Polym Sci 107:382Google Scholar
  156. 156.
    Dainiak MB, Galaev IY, Kumar A, Plieva FM, Mattiasson B (2007) Adv Biochem Eng Biotechnol 106:101Google Scholar
  157. 157.
    Plieva FM, Galaev IY, Noppe W, Mattiasson B (2008) Trends Microbiol 16:543Google Scholar
  158. 158.
    Kumar A, Mishra R, Reinwald Y, Bhat S (2010) Mater Today 13:42Google Scholar
  159. 159.
    Okay O (2010) Production of macroporous polymeric materials by phase separation polymerization. In: Mattiasson B, Kumar A, Galaev I (eds) Macroporous polymers: production, properties and biological/biomedical applications. CRC, Boca Raton, p 3Google Scholar
  160. 160.
    Plieva FM, Galaev IY, Mattiasson B (2010) Production and properties of cryogels by radical polymerization. In: Mattiasson B, Kumar A, Galaev I (eds) Macroporous polymers: production, properties and biological/biomedical applications. CRC, Boca Raton, p 23Google Scholar
  161. 161.
    Kirsebom H, Mattiasson B (2011) Polym Chem 2:1059Google Scholar
  162. 162.
    Plieva FM, Kirsebom H, Mattiasson B (2011) J Sep Sci 34:2164Google Scholar
  163. 163.
    Henderson TMA, Ladewig K, Haylock DN, McLean KM, O’Connor AJ (2013) J Mater Chem B 1:2682Google Scholar
  164. 164.
    Zhang H, Zhang F, Wu J (2013) React Funct Polym 73:923Google Scholar
  165. 165.
    Trieu HH, Qutubuddin S (1995) Polymer 36:2531Google Scholar
  166. 166.
    Willcox PJ, Howie DW, Schmidt-Rohr K, Hoagland DA, Gido S, Pudjijanto S, Kleiner LW, Venkatraman S (1999) J Polym Sci Polym Phys 37:3438Google Scholar
  167. 167.
    Franks F (ed) (1982) Water and aqueous solutions at subzero temperatures. New York, PlenumGoogle Scholar
  168. 168.
    Regand A, Goff HD (2003) Food Hydrocolloid 17:95Google Scholar
  169. 169.
    Libbrecht KG (2005) Reports Prog Phys 68:855Google Scholar
  170. 170.
    Ward MA, Georgiu TK (2011) Polymers 3:1215Google Scholar
  171. 171.
    Doring A, Birnbaum W, Kuckling D (2013) Chem Soc Rev 42:7391Google Scholar
  172. 172.
    Lozinsky VI, Kalinina EV, Grinberg VY, Grinberg NV, Chupov VA, Platé NA (1997) Polym Sci 39A:1300Google Scholar
  173. 173.
    Zhang XZ, Zhuo RX (1999) Macromol Chem Phys 200:2602Google Scholar
  174. 174.
    Komarova GA, Starodubtsev SG, Lozinsky VI, Kalinina EV, Landfester K, Khokhlov AR (2008) Langmuir 24:4467Google Scholar
  175. 175.
    Komarova GA, Starodubtsev SG, Lozinsky VI, Nasimova IR, Khokhlov AR (2013) J Appl Polym Sci 127:2703Google Scholar
  176. 176.
    Komarova GA, Starodubtsev SG, Khokhlov AR (2013) Polym Sci 55A:415Google Scholar
  177. 177.
    Lozinsky VI, Sakhno NG, Damshkaln LG, Bakeeva IV, Zubov VP, Kurochkin IN, Kurochkin II (2011) Colloid J 73:234Google Scholar
  178. 178.
    Finnegan WG, Pitter RL (1997) J Colloid Interface Sci 189:322Google Scholar
  179. 179.
    Wang S, Amornwittawat N, Banatlao J, Chung M, Kao Y, Wen X (2009) J Phys Chem 113B:13891Google Scholar
  180. 180.
    Lozinsky VI, Damshkaln LG, Ezernitskaya MG, Glotova YK, Antonov YA (2012) Soft Matter 8:8493Google Scholar
  181. 181.
    Suzuki M, Hirasa O (1993) Adv Polym Sci 110:241Google Scholar
  182. 182.
    Lozinsky VI, Solodova EV, Zubov AL, Simenel IA (1995) J Appl Polym Sci 58:171Google Scholar
  183. 183.
    Cascone MG, Maltini S, Barbani, Laus M (1999) J Mater Sci Mater Med 10:431Google Scholar
  184. 184.
    Cascone MG, Barbani N, Maltini S, Lazzeri L (2001) Polym Int 50:1241Google Scholar
  185. 185.
    Bajpai A, Saini R (2005) Polym Int 54:796Google Scholar
  186. 186.
    Mathews DT, Birney YA, Cahill PA, McGuinness CB (2008) J Appl Polym Sci 109:1129Google Scholar
  187. 187.
    Bajpai A, Saini R (2009) J Mater Sci Mater Med 20:2063Google Scholar
  188. 188.
    Albertsson PA (1971) Partition of cell particles and macromolecules, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  189. 189.
    Shapiro YE, Shapiro TI (1999) J Colloid Interface Sci 217:322Google Scholar
  190. 190.
    Savina IN, Lozinsky VI (2004) Colloid J 66:343Google Scholar
  191. 191.
    Trieu HH, Qutubuddin S (1964) Colloid Polym Sci 272:301Google Scholar
  192. 192.
    Lozinsky VI, Damshkaln LG, Kurochkin IN, Kurochkin II (2005) Colloid J 67:589Google Scholar
  193. 193.
    Lozinsky VI, Damshkaln LG (2001) J Appl Polym Sci 82:1609Google Scholar
  194. 194.
    Altunina LK, Manzhai BN, Fufaeva MS (2006) Russ J Appl Chem 79:1669Google Scholar
  195. 195.
    Altunina LK, Kuvshinov VA, Dolgikh SN (2006) In: Lombardi S, Altunina LK, Beaubien SE (eds) Advances in the geological storage of carbon dioxide. NATO Science Series IV: earth and environmental sciences, vol. 65. Springer, Netherlands, p.103Google Scholar
  196. 196.
    Altunina LK, Manzhai BN, Stas’eva LA, Fufaeva MS (2007) Russ J Appl Chem 80:1647Google Scholar
  197. 197.
    Colosi C, Costantini M, Barbetta A, Pecci R, Bedini R, Dentini M (2013) Langmuir 29:82Google Scholar
  198. 198.
    Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS (2013) Spine J 13:243Google Scholar
  199. 199.
    Barroso T, Hussain A, Roque ACA, Aguiar-Ricardo A (2013) Biotechnol J 8:671Google Scholar
  200. 200.
    Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Anal Bioanal Chem 405:2133Google Scholar
  201. 201.
    Sheldon RA, van Pelt S (2013) Chem Soc Rev 42:6223Google Scholar
  202. 202.
    Kharkar PM, Kiick KL, Kloxin AM (2013) Chem Soc Rev 42:7335Google Scholar
  203. 203.
    Tanthapanichakoon W, Tamon H, Nakasawa K, Charinpanitkul T (2013) Eng J 17:1Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory for Cryochemistry of (Bio)Polymers, A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations