Skip to main content

Basic Principles of Cryotropic Gelation

  • Chapter
  • First Online:
Polymeric Cryogels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 263))

Abstract

Polymeric cryogels are the gel systems formed in moderately frozen solutions or colloidal dispersions of precursors potentially capable of gelling. Polymeric cryogels are of growing practical interest in various applied areas. The fabrication of any cryogel includes the following necessary stages: preparation of the feed system, its freezing, incubation of the gelation system in a frozen state, and thawing of the frozen sample. The nature of gel precursors, their concentration in the initial feed, and the conditions of each of the stages affect the physicochemical properties and porous morphology of the resulting cryogels. Certain specific effects are inherent in the processes of cryotropic gel formation, namely, apparent decrease in the critical concentration of gelation, acceleration of gel formation over a certain range of negative temperatures, a bell-shaped temperature dependence of the cryotropic gelation efficiency, and generation of the specific porosity peculiar to cryogels. This chapter presents the basic principles of cryotropic gelation processes and also discusses the factors influencing the properties of various types of cryogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCG:

Critical concentration of gelation

CTAB:

Cetyltrimethylammonium bromide

DMSO:

Dimethylsulfoxide

GuAr:

Gum arabic

LCST:

Lower critical solution temperature

NMR:

Nuclear magnetic resonance

PVA:

Poly(vinyl alcohol)

SEM:

Scanning electron microscopy

UCST:

Upper critical solution temperature

UFLMP:

Unfrozen liquid microphase

VA:

Vinyl alcohol

VAc:

Vinyl acetate

References

  1. Lozinsky VI (2014) A brief history of polymeric cryogels. In: Okay O (ed) Polymeric cryogels: macroporous gels with remarkable properties. Advances in Polymer Science, vol 263. Springer, Heidelberg

    Google Scholar 

  2. Papkov SP (1974) Gel-like state of polymers. Khimiya, Moscow, in Russian

    Google Scholar 

  3. Kudela V (1987) Encyclopedia of polymer science and engineering, vol. 7. Wiley, New York, p 783

    Google Scholar 

  4. Tanaka T (1987) In: Nicolini C (ed) Structure and dynamics of biopolymers. Dordrecht: M. Nijhoff, p 237

    Google Scholar 

  5. Rogovina LZ, Vasil’ev VG, Braudo EE (2008) Polym Sci 50C:85

    Google Scholar 

  6. Nishinari K (2009) Prog Colloid Polym Sci 136:87

    CAS  Google Scholar 

  7. Lozinsky VI (1994) DSc Thesis, Institute of Organoelement Compounds, Russian Academy of Sciences. Moscow, in Russian

    Google Scholar 

  8. Lozinsky VI (2002) Russ Chem Revs 71:489

    CAS  Google Scholar 

  9. Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2001) Bioseparation 10:163

    CAS  Google Scholar 

  10. Nikonorov VV, Ivanov RV, Kil’deeva NR, Bulatnikova LN, Lozinsky VI (2010) Polym Sci 52A:828

    Google Scholar 

  11. Lozinsky VI, Vainerman ES, Rogozhin SV (1982) SU Patent 1,008,214

    Google Scholar 

  12. Rogozhin SV, Lozinsky VI, Vainerman ES, Domotenko LV, Mamtsis AM, Ivanova SA, Shtil’man MI, Korshak VV (1984) Doklady Akademii nauk SSSR 278:129–133, in Russian

    CAS  Google Scholar 

  13. Labudzińska A, Ziabicki A (1971) Koll Z u Z Polym 243:21

    Google Scholar 

  14. Schulze WE, Yu DT, MacMaters MM (1964) Stärke 16:41

    CAS  Google Scholar 

  15. Schierbaum F, Richter M (1964) Nahrung 8:487, in German

    CAS  Google Scholar 

  16. Blažek L, Dvoržak E, Myšik S (1964) Koll Zhurn 26:657, in Russian

    Google Scholar 

  17. Neiman RE (1967) Coagulation of synthetic latexes. Voronezh State University, Voronezh, pp 148–159, in Russian

    Google Scholar 

  18. Jellinek HHG, Fok SY (1967) Makromol Chem 104:18

    CAS  Google Scholar 

  19. Lozinsky VI, Korneeva MN, Vainerman ES, Rogozhin SV (1983) Doklady Akademii nauk SSSR 270:101, in Russian

    Google Scholar 

  20. Lozinsky VI, Vainerman ES, Titova EF, Belavtseva EM, Rogozhin SV (1984) Colloid Polym Sci 262:769

    Google Scholar 

  21. Belavtseva EM, Titova EF, Lozinsky VI, Vainerman ES, Rogozhin SV (1984) Colloid Polym Sci 262:775–779

    CAS  Google Scholar 

  22. Lozinsky VI, Vainerman ES, Ivanova SA, Titova EF, Shtil’man MI, Belavtseva EM, Rogozhin SV (1986) Acta Polym 37:142

    CAS  Google Scholar 

  23. Lozinsky VI, Morozova SA, Vainerman ES, Titova EF, Shtil’man MI, Belavtseva EM, Rogozhin SV (1989) Acta Polym 40:8

    Google Scholar 

  24. Ozmen MM, Okay O (2008) React Funct Polym 68:1467

    Google Scholar 

  25. Ozmen MM, Dinu MV, Okay O (2008) Polym Bull 60:169

    CAS  Google Scholar 

  26. Lozinsky VI, Vainerman ES, Rogozhin SV (1982) Colloid Polym Sci 260:776

    Google Scholar 

  27. Lozinsky VI, Vainerman ES, Korotaeva GF, Rogozhin SV (1984) Colloid Polym Sci 262:617

    Google Scholar 

  28. Lozinsky VI, Golovina TO, Gusev DG (2000) Polymer 41:35

    CAS  Google Scholar 

  29. Ivanov RV, Lozinsky VI, Noh SK, Han SS, Lyoo WS (2007) J Appl Polym Sci 106:1470

    CAS  Google Scholar 

  30. Tuncaboylu DC, Okay O (2009) Eur Polym J 45:2033

    CAS  Google Scholar 

  31. Orakdogen N, Karacan P, Okay O (2011) React Funct Polym 71:782

    CAS  Google Scholar 

  32. Nikonorov VV, Ivanov RV, Kil’deeva NR, Lozinsky VI (2011) Polym Sci 53A:1150

    Google Scholar 

  33. Bloch K, Lozinsky VI, Galaev IY, Yavriyanz K, Vorobeychik M, Azarov D, Damshkaln LG, Mattiasson D, Vardi P (2005) J Biomed Mater Res 75A:802

    CAS  Google Scholar 

  34. Lozinsky VI, Damshkaln LG, Bloch KO, Vardi P, Grinberg NV, Burova TV, Grinberg VY (2008) J Appl Polym Sci 108:3046

    CAS  Google Scholar 

  35. Flink JM, Johansen A (1985) Biotechnol Lett 7(10):765

    CAS  Google Scholar 

  36. Johansen A, Flink JM (1986) Biotechnol Lett 8(2):121

    CAS  Google Scholar 

  37. Vainerman ES, Lozinsky VI, Rogozhin SV, Raskina LP, Shapiro LA, Yakubovich VS, Bronshtein VY (1983) SU Patent 1:171,474

    Google Scholar 

  38. Vainerman ES, Lozinsky VI, Rogozhin SV, Raskina LP, Shapiro LA, Yakubovich VS, Shenker MB, Komissarova AL, Potapov VD, Gudochkova VM, Atyasova NM, Ivanova GA (1983) SU Patent 1,171,476

    Google Scholar 

  39. Zhang H, Cooper AI (2007) Adv Mater 19:1529

    CAS  Google Scholar 

  40. Gutiérrez MC, Ferrer ML, del Monte F (2008) Chem Mater 20:634

    Google Scholar 

  41. Franks F (1981) In: Morris GJ, Clarke A (eds) Effects of low temperatures on biological membranes. Academic, New York 3

    Google Scholar 

  42. Luyet BJ (1966) In: Meryman HT (ed) Cryobiology. Academic, New York, 115

    Google Scholar 

  43. Libbrecht KG (2005) Rep Prog Phys 68:855

    Google Scholar 

  44. Lozinsky VI, Damshkaln LG, Shaskol’skii BL, Babushkina TA, Kurochkin IN, Kurochkin II (2007) Colloid J 69:747

    CAS  Google Scholar 

  45. Tuncaboylu DC, Okay O (2010) Langmuir 26:7574

    CAS  Google Scholar 

  46. Ak F, Oztoprak Z, Karakutuk I, Okay O (2013) Biomacromolecules 14:719

    CAS  Google Scholar 

  47. Okay O, Lozinsky VI (2014) Synthesis and structure–property relationships of cryogels. In: Okay O (ed) Polymeric cryogels: macroporous gels with remarkable properties. Advances in polymer science, vol 263. Springer, Heidelberg

    Google Scholar 

  48. Lozinsky VI, Damshkaln LG, Kurochkin IN, Kurochkin II (2012) Colloid J 74:319

    CAS  Google Scholar 

  49. Ivanov RV, Lozinsky VI (2006) Polym Sci 48A:1232

    Google Scholar 

  50. Gusev DG, Lozinsky VI, Bakhmutov VI (1993) Eur Polym J 29:49

    CAS  Google Scholar 

  51. Vonnegut B, Chessin H (1971) Science 174:945

    CAS  Google Scholar 

  52. Kirsebom H, Rata G, Topgaard D, Mattiasson B, Galaev IY (2008) Polymer 49:3855

    CAS  Google Scholar 

  53. Zheng L, Sun DW (2006) Trends Food Sci Technol 17:16

    CAS  Google Scholar 

  54. Sergeev GB, Batyuk VA, Stepanov MB, Sergeev BM (1973) Doklady Akademii nauk SSSR 213:891, in Russian

    Google Scholar 

  55. Grant NH, Clark DE, Alburn HE (1961) J Am Chem Soc 83:4476

    CAS  Google Scholar 

  56. Grant NH, Clark DE, Alburn HE (1962) J Am Chem Soc 84:876

    CAS  Google Scholar 

  57. Butler AR, Bruice TC (1964) J Am Chem Soc 86:313

    CAS  Google Scholar 

  58. Bruice TC, Butler AR (1964) J Am Chem Soc 86:4104

    CAS  Google Scholar 

  59. Pincock RE, Kiovsky TE (1965) J Am Chem Soc 87:2072

    CAS  Google Scholar 

  60. Grant NH, Clark DE, Alburn HE (1966) J Am Chem Soc 88:4071

    CAS  Google Scholar 

  61. Pincock RE, Kiovsky TE (1966) J Chem Educ 43:358

    CAS  Google Scholar 

  62. Pincock RE (1969) Acc Chem Res 2:97

    CAS  Google Scholar 

  63. Sergeev GB, Batyuk VA (1976) Russ Chem Rev 45:391

    Google Scholar 

  64. Batyuk VA (1987) The chemistry of low temperatures and cryochemical technology. Moscow State University, Moscow, p 163, in Russian

    Google Scholar 

  65. Ivanov RV, Babushkina TA, Lozinsky VI (2005) Polymer Sci 47A:791

    Google Scholar 

  66. Kuntz ID (1971) J Am Chem Soc 93:514

    CAS  Google Scholar 

  67. Kvlividze VI, Pylova MB (1977) Kolloidn zhurn 39:1167, in Russian

    CAS  Google Scholar 

  68. Katayama S, Fujiwara S (1980) J Phys Chem 84:2320

    CAS  Google Scholar 

  69. Suzuki E, Nagashima N (1982) Bull Chem Soc Jpn 55:2730

    CAS  Google Scholar 

  70. Ogino K, Sato H (1995) J Polym Sci Polym Phys 33:445

    CAS  Google Scholar 

  71. Masuda K, Horii F (1998) Macromolecules 31:5810

    CAS  Google Scholar 

  72. Martin DR, Ablett S, Darke A, Sutton RL, Sahagian M (1999) J Food Sci 64:46

    CAS  Google Scholar 

  73. Mil’ EM, Kovarskii AL, Vasserman AM (1973) Izv AN SSSR Ser khim 10:2211, in Russian

    Google Scholar 

  74. Mikhalev OI, Yakovleva IV, Trofimov VI, Shapiro AB (1985) Cryo Lett 6:245

    CAS  Google Scholar 

  75. Mikhalev OI, Karpov IN, Kazarova EB, Alfimov MV (1989) Chem Phys Lett 164:96

    CAS  Google Scholar 

  76. Mikhalev OI, Serpinski M, Lozinsky VI, Kapanin PV, Chkeidze II, Alfimov MV (1991) Cryo Lett 12:197

    CAS  Google Scholar 

  77. Smith P, Pennings AJ (1974) Polymer 15:413

    CAS  Google Scholar 

  78. Gusev DG, Lozinsky VI, Vainerman ES, Bakhmutov VI (1990) Magn Reson Chem 28:651

    CAS  Google Scholar 

  79. Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Macromolecules 37:9510

    CAS  Google Scholar 

  80. Kaetsu I (1993) Adv Polym Sci 105:81

    CAS  Google Scholar 

  81. Zhang XZ, Zhuo RX (1999) Macromol Rapid Commun 20:229

    Google Scholar 

  82. Kumakura M (2001) Polym Adv Technol 12:415

    CAS  Google Scholar 

  83. Yao K, Shen S, Yun J, Wang L, He X, Yu X (2006) Chem Eng Sci 61:6701

    CAS  Google Scholar 

  84. Plieva FM, Galaev IY, Mattiasson B (2007) J Sep Sci 30:1657

    CAS  Google Scholar 

  85. Reichelt S, Abe C, Hainich S, Knolle W, Decker U, Prager A, Konieczny R (2013) Soft Matter 9:2484

    CAS  Google Scholar 

  86. Lozinsky VI, Golovina TO, Vainerman ES, Rogozhin SV (1989) Polym Sci USSR 31A:367

    Google Scholar 

  87. Petrov P, Petrova E, Tchorbanov B, Tsvetanov CB, Reiss G (2007) Polymer 48:4943

    CAS  Google Scholar 

  88. Liu X, Hu Y, Zou J, Chai, Li B (2013) Appl Mech Mater 295–298:1368

    Google Scholar 

  89. Watase M, Nishinari K, Nambu M (1983) Polym Commun 24:52

    CAS  Google Scholar 

  90. Watase M, Nishinari K (1983) Polym Commun 24:270

    CAS  Google Scholar 

  91. Watase M, Nishinari K, Ogino K, Nambu M (1983) Polym Commun 24:345

    Google Scholar 

  92. Lozinsky VI, Vainerman ES, Domotenko LV, Mamtsis AM, Titova EF, Belavtseva EM, Rogozhin SV (1986) Colloid Polym Sci 264:19

    CAS  Google Scholar 

  93. Domotenko LV, Lozinsky VI, Vainerman ES, Rogozhin SV (1988) Polym Sci USSR 30A:1758

    Google Scholar 

  94. Lozinsky VI, Domotenko LV, Vainerman ES, Rogozhin SV (1989) Polym Sci USSR 31A:1983

    Google Scholar 

  95. Lozinsky VI, Vainerman ES, Domotenko LV, Blumenfel'd AL, Rogov VV, Barkovskaya EN, Fedin EI, Rogozhin SV (1989) Colloid J USSR 51:592

    Google Scholar 

  96. Konstantinova NR, Lozinsky VI (1997) Food Hydrocolloids 11:113

    CAS  Google Scholar 

  97. Damshkaln LG, Simenel IA, Lozinsky VI (1999) J Appl Polym Sci 74:1978

    CAS  Google Scholar 

  98. Lozinsky VI, Damshkaln LG, Brown CRT, Norton IT (2000) J Appl Polym Sci 75:1740

    CAS  Google Scholar 

  99. Lozinsky VI, Damshkaln LG (2000) J Appl Polym Sci 77:2017

    CAS  Google Scholar 

  100. Lozinsky VI, Damshkaln IG, Brown R, Norton IT (2000) Polym Int 49:1434

    CAS  Google Scholar 

  101. Lozinsky VI, Damshkaln LG, Brown CRT, Norton IT (2002) J Appl Polym Sci 83:1658

    CAS  Google Scholar 

  102. Zeira A, Nussinovich A (2004) J Texture Stud 34:561

    Google Scholar 

  103. Elowsson L, Kirsebom H, Carmignac V, Durbeej M, Mattiasson B (2012) J Mater Sci Mater Med 23:2489

    CAS  Google Scholar 

  104. Lozinsky VI, Ivanov RV, Kalinina EV, Timofeeva GI, Khokhlov AR (2001) Macromol Rapid Commun 22:1441

    CAS  Google Scholar 

  105. Lozinsky VI, Ivanov RV (2003) In: Monakov YB (ed) Synthesis and modification of polymers. Khimiya, Moscow, p 68, in Russian

    Google Scholar 

  106. Zaborina OE, Buzin MI, Lozinsky VI (2012) Polym Sci 54B:354

    Google Scholar 

  107. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Trends Biotechnol 21:445

    CAS  Google Scholar 

  108. Ferrero C, Martino MN, Zaritzky NE (1993) Int J Food Sci Technol 17:191

    CAS  Google Scholar 

  109. Lozinsky VI, Damshkaln LG, Brown R, Norton IT (2000) J Appl Polym Sci 78:371

    CAS  Google Scholar 

  110. Hyon SH, Cha WI, Ikada Y (1989) Kobunshi Ronbunshu 46:673, in Japanese

    CAS  Google Scholar 

  111. Lozinsky VI (1998) Russ Chem Rev 67:573

    Google Scholar 

  112. Lozinsky VI, Plieva FM (1998) Enzyme Microb Technol 23:227

    CAS  Google Scholar 

  113. Lozinsky VI, Zubov AL, Savina IN, Plieva FM (2000) J Appl Polym Sci 77:1822

    CAS  Google Scholar 

  114. Lozinsky VI (2008) Russ Chem Bull 57:1015

    CAS  Google Scholar 

  115. Tanaka R, Hatakeyama T, Hatakeyama H (1998) Polym Int 45:118

    CAS  Google Scholar 

  116. Matusevich LN (1968) Crystallization from solutions in chemical industry. Khimiya, Moscow, p 304, in Russian

    Google Scholar 

  117. Hassan CM, Ward JH, Peppas NA (2000) Polymer 41:6729

    CAS  Google Scholar 

  118. Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Laupretre F (2003) Polymer 44:3375

    CAS  Google Scholar 

  119. Ricciardi R, Auriemma F, Rosa CD, Laupretre F (2004) Macromolecules 37:1921

    CAS  Google Scholar 

  120. Valentín JL, López D, Hernández R, Mijangos C, Saalwächter K (2009) Macromolecules 42:263

    Google Scholar 

  121. Watase M, Nishinari K, Nambu M (1983) Cryo Lett 4:197

    CAS  Google Scholar 

  122. Watase M (1983) Nippon Kagaku Kaisi 7:973, in Japanese

    Google Scholar 

  123. Nagura M, Nagura M, Ishikawa H (1984) Polym Commun 25:313

    CAS  Google Scholar 

  124. Watase M, Nishinari K (1985) Makromol Chem 186:1081

    CAS  Google Scholar 

  125. Watase M, Nishinari K (1985) J Polym Sci Polym Phys 23:1803

    CAS  Google Scholar 

  126. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Colloid Polym Sci 264:595

    CAS  Google Scholar 

  127. Nambu M (1990) Kobunshi Ronbunshu 47:695, in Japanese

    CAS  Google Scholar 

  128. Urushizaki F, Yamaguchi H, Nakamura K, Namajiri S, Sugibayashi K, Morimoto Y (1990) Int J Pharm 58:135

    CAS  Google Scholar 

  129. Peppas NA, Stauffer SR (1991) J Control Release 16:305

    CAS  Google Scholar 

  130. Hassan CM, Peppas NA (2000) Adv Polym Sci 153:37

    CAS  Google Scholar 

  131. Wan WK, Campbell G, Zhang ZF, Hui AJ, Boughner DR (2002) J Biomed Mater Res 63:854

    CAS  Google Scholar 

  132. Sweeszkowski W, Ku DN, Bersee HEN, Kurzcydlowski KJ (2006) Biomaterials 27:1536

    Google Scholar 

  133. Lozinsky VI, Damshkaln LG, Kurochkin IN, Kurochkin II (2008) Colloid J 70:189

    CAS  Google Scholar 

  134. Roberts JD, Caserio MC (1977) Basic principles of organic chemistry, 2nd edn. W.A. Benjamin, Menlo Park

    Google Scholar 

  135. Horkay F, Nagy M (1981) Acta Chim Acad Sci Hung 107:321

    CAS  Google Scholar 

  136. Peppas NA (1987) In: Peppas NA (ed) Hydrogels in biology and medicine II. CRC, Boca Raton, p 1

    Google Scholar 

  137. Davis BJ (1964) Ann NY Acad Sci 121:404

    CAS  Google Scholar 

  138. Sun K, Sehon AH (1965) Can J Chem 43:969

    CAS  Google Scholar 

  139. Righetti PG, Brost BSW, Snyder RS (1981) J Biochem Biophys Methods 4:347

    CAS  Google Scholar 

  140. Maier H, Anderson M, Karl C, Magnuson K, Whistler RL (1993) In: Whistler RL, BeMiller JN (eds) Industrial gums. Academic, San Diego, p 181

    Google Scholar 

  141. Richardson PH, Clark AH, Russell AL, Aymard P, Norton IT (1999) Macromolecules 32:1519

    CAS  Google Scholar 

  142. Dea ICM, Morris ER, Rees DA, Welsh J, Barnes HA, Price J (1977) Carbohydr Res 57:249

    CAS  Google Scholar 

  143. Dea ICM (1987) In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam, p 207

    Google Scholar 

  144. Bringham JE, Gidley MJ, Hoffmann RA, Smith CG (1994) Food Hydrocolloid 8:331

    Google Scholar 

  145. Lazaridou A, Biliaderis CG, Izydorczyk MS (2003) Food Hydrocolloid 17:693

    CAS  Google Scholar 

  146. Lazaridou A, Biliaderis CG (2004) Food Hydrocolloid 18:933

    CAS  Google Scholar 

  147. Richter M, Augustat S, Schierbaum F (1969) Ausgewahlte Metoden Der Starkechemie. VEB Fachbuchverlag, Leipzig, in German

    Google Scholar 

  148. Lozinsky VI, Vakula AV, Zubov AL (1992) Soviet Biotechnol #4:1

    Google Scholar 

  149. Gutiérrez MC, Aranaz I, Ferrer ML, del Monto F (2010) Production and properties of poly(vinyl alcohol) cryogels: recent developments. In: Mattiasson B, Kumar A, Galaev I (eds) Macroporous polymers: production, properties and biological/biomedical applications. CRC, Boca Raton, p 83

    Google Scholar 

  150. Alves MH, Jensen BEB, Smith AAA, Zelikin AN (2011) Macromol Biosci 11:1293

    CAS  Google Scholar 

  151. Shapiro YE (2011) Prog Polym Sci 36:1184

    CAS  Google Scholar 

  152. Gun’ko VM, Savina IN, Mikhalovsky SV (2013) Adv Colloid Interface Sci 186/187:1

    Google Scholar 

  153. Vainerman ES, Lozinsky VI, Rogozhin SV (1981) Colloid Polym Sci 259:1198–1201

    CAS  Google Scholar 

  154. Lozinsky VI, Golovina TO, Vainerman ES, Rogozhin SV (1989) Polym Sci USSR 31A:367

    Google Scholar 

  155. Ivanov RV, Lozinsky VI, Noh SK, Lee YR, Han SS, Lyoo WS (2008) J Appl Polym Sci 107:382

    CAS  Google Scholar 

  156. Dainiak MB, Galaev IY, Kumar A, Plieva FM, Mattiasson B (2007) Adv Biochem Eng Biotechnol 106:101

    CAS  Google Scholar 

  157. Plieva FM, Galaev IY, Noppe W, Mattiasson B (2008) Trends Microbiol 16:543

    CAS  Google Scholar 

  158. Kumar A, Mishra R, Reinwald Y, Bhat S (2010) Mater Today 13:42

    CAS  Google Scholar 

  159. Okay O (2010) Production of macroporous polymeric materials by phase separation polymerization. In: Mattiasson B, Kumar A, Galaev I (eds) Macroporous polymers: production, properties and biological/biomedical applications. CRC, Boca Raton, p 3

    Google Scholar 

  160. Plieva FM, Galaev IY, Mattiasson B (2010) Production and properties of cryogels by radical polymerization. In: Mattiasson B, Kumar A, Galaev I (eds) Macroporous polymers: production, properties and biological/biomedical applications. CRC, Boca Raton, p 23

    Google Scholar 

  161. Kirsebom H, Mattiasson B (2011) Polym Chem 2:1059

    CAS  Google Scholar 

  162. Plieva FM, Kirsebom H, Mattiasson B (2011) J Sep Sci 34:2164

    CAS  Google Scholar 

  163. Henderson TMA, Ladewig K, Haylock DN, McLean KM, O’Connor AJ (2013) J Mater Chem B 1:2682

    CAS  Google Scholar 

  164. Zhang H, Zhang F, Wu J (2013) React Funct Polym 73:923

    CAS  Google Scholar 

  165. Trieu HH, Qutubuddin S (1995) Polymer 36:2531

    CAS  Google Scholar 

  166. Willcox PJ, Howie DW, Schmidt-Rohr K, Hoagland DA, Gido S, Pudjijanto S, Kleiner LW, Venkatraman S (1999) J Polym Sci Polym Phys 37:3438

    CAS  Google Scholar 

  167. Franks F (ed) (1982) Water and aqueous solutions at subzero temperatures. New York, Plenum

    Google Scholar 

  168. Regand A, Goff HD (2003) Food Hydrocolloid 17:95

    CAS  Google Scholar 

  169. Libbrecht KG (2005) Reports Prog Phys 68:855

    Google Scholar 

  170. Ward MA, Georgiu TK (2011) Polymers 3:1215

    CAS  Google Scholar 

  171. Doring A, Birnbaum W, Kuckling D (2013) Chem Soc Rev 42:7391

    Google Scholar 

  172. Lozinsky VI, Kalinina EV, Grinberg VY, Grinberg NV, Chupov VA, Platé NA (1997) Polym Sci 39A:1300

    Google Scholar 

  173. Zhang XZ, Zhuo RX (1999) Macromol Chem Phys 200:2602

    CAS  Google Scholar 

  174. Komarova GA, Starodubtsev SG, Lozinsky VI, Kalinina EV, Landfester K, Khokhlov AR (2008) Langmuir 24:4467

    CAS  Google Scholar 

  175. Komarova GA, Starodubtsev SG, Lozinsky VI, Nasimova IR, Khokhlov AR (2013) J Appl Polym Sci 127:2703

    CAS  Google Scholar 

  176. Komarova GA, Starodubtsev SG, Khokhlov AR (2013) Polym Sci 55A:415

    Google Scholar 

  177. Lozinsky VI, Sakhno NG, Damshkaln LG, Bakeeva IV, Zubov VP, Kurochkin IN, Kurochkin II (2011) Colloid J 73:234

    CAS  Google Scholar 

  178. Finnegan WG, Pitter RL (1997) J Colloid Interface Sci 189:322

    CAS  Google Scholar 

  179. Wang S, Amornwittawat N, Banatlao J, Chung M, Kao Y, Wen X (2009) J Phys Chem 113B:13891

    Google Scholar 

  180. Lozinsky VI, Damshkaln LG, Ezernitskaya MG, Glotova YK, Antonov YA (2012) Soft Matter 8:8493

    CAS  Google Scholar 

  181. Suzuki M, Hirasa O (1993) Adv Polym Sci 110:241

    CAS  Google Scholar 

  182. Lozinsky VI, Solodova EV, Zubov AL, Simenel IA (1995) J Appl Polym Sci 58:171

    CAS  Google Scholar 

  183. Cascone MG, Maltini S, Barbani, Laus M (1999) J Mater Sci Mater Med 10:431

    CAS  Google Scholar 

  184. Cascone MG, Barbani N, Maltini S, Lazzeri L (2001) Polym Int 50:1241

    CAS  Google Scholar 

  185. Bajpai A, Saini R (2005) Polym Int 54:796

    CAS  Google Scholar 

  186. Mathews DT, Birney YA, Cahill PA, McGuinness CB (2008) J Appl Polym Sci 109:1129

    CAS  Google Scholar 

  187. Bajpai A, Saini R (2009) J Mater Sci Mater Med 20:2063

    CAS  Google Scholar 

  188. Albertsson PA (1971) Partition of cell particles and macromolecules, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  189. Shapiro YE, Shapiro TI (1999) J Colloid Interface Sci 217:322

    CAS  Google Scholar 

  190. Savina IN, Lozinsky VI (2004) Colloid J 66:343

    CAS  Google Scholar 

  191. Trieu HH, Qutubuddin S (1964) Colloid Polym Sci 272:301

    Google Scholar 

  192. Lozinsky VI, Damshkaln LG, Kurochkin IN, Kurochkin II (2005) Colloid J 67:589

    CAS  Google Scholar 

  193. Lozinsky VI, Damshkaln LG (2001) J Appl Polym Sci 82:1609

    CAS  Google Scholar 

  194. Altunina LK, Manzhai BN, Fufaeva MS (2006) Russ J Appl Chem 79:1669

    CAS  Google Scholar 

  195. Altunina LK, Kuvshinov VA, Dolgikh SN (2006) In: Lombardi S, Altunina LK, Beaubien SE (eds) Advances in the geological storage of carbon dioxide. NATO Science Series IV: earth and environmental sciences, vol. 65. Springer, Netherlands, p.103

    Google Scholar 

  196. Altunina LK, Manzhai BN, Stas’eva LA, Fufaeva MS (2007) Russ J Appl Chem 80:1647

    CAS  Google Scholar 

  197. Colosi C, Costantini M, Barbetta A, Pecci R, Bedini R, Dentini M (2013) Langmuir 29:82

    CAS  Google Scholar 

  198. Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS (2013) Spine J 13:243

    Google Scholar 

  199. Barroso T, Hussain A, Roque ACA, Aguiar-Ricardo A (2013) Biotechnol J 8:671

    CAS  Google Scholar 

  200. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Anal Bioanal Chem 405:2133

    CAS  Google Scholar 

  201. Sheldon RA, van Pelt S (2013) Chem Soc Rev 42:6223

    CAS  Google Scholar 

  202. Kharkar PM, Kiick KL, Kloxin AM (2013) Chem Soc Rev 42:7335

    CAS  Google Scholar 

  203. Tanthapanichakoon W, Tamon H, Nakasawa K, Charinpanitkul T (2013) Eng J 17:1

    Google Scholar 

Download references

Acknowledgements

The work was supported by the joint Russian–Turkish grant from the Russian Foundation for Basic Research (Project # 12-03-91371-CT-a) and the Scientific and Technical Research Council of Turkey (Project # 211 T044). The authors also thank Drs. Andrey Ryabev and Roman Ivanov for the valuable help in the artwork preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Lozinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lozinsky, V.I., Okay, O. (2014). Basic Principles of Cryotropic Gelation. In: Okay, O. (eds) Polymeric Cryogels. Advances in Polymer Science, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-319-05846-7_2

Download citation

Publish with us

Policies and ethics