Skip to main content

The Evolution of Relief in Mid-Altitude Mountains as a Result of the Delivery of Slope Material to Valley Floors: Discussion

  • Chapter
  • First Online:
Slope-Channel Coupling as a Factor in the Evolution of Mountains

Part of the book series: Springer Theses ((Springer Theses))

  • 289 Accesses

Abstract

On the base of observed course of slope material delivery into valley floors in small mid-mountain catchments, the formation of relief under the impact of slope-channel coupling was discussed. The results of the studies presented in this thesis indicate that the transfer of slope material into valley floors and coupling between slope and fluvial sub-systems are common factors shaping the relief of mid-altitude mountains. The delivery of slope material influences the relief both in valley heads in the middle zones of catchments and on outlet fans. The widespread occurrence of coupling between slopes and channels on the small catchments studied and its significant role in development of relief within particular zones of catchments suggest that coupling can be a factor important in the evolution of the relief of whole catchments, and through these whole mountain ranges. Therefore in the chapter, I have attempted to prepare a schema of evolution of mid-mountain relief due to the interaction of slopes and stream channels in small catchments. Detailed results of the thesis are discussed here as the premises of the schema. The schema itself is presented to describe the evolution of mid-mountain landscape through gradual transformation of valley heads into the middle zone and the middle zone into outlet fans. This was discussed taking into account the influence of geological setting, human impact, climate change and tectonic activity. Using the results obtained from the ten catchments analysed and data obtained from the literature review, a proposition was made that the established model may describe a general rule for the evolution of mid-mountain landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azañón JM, Azor A, PĂ©rez-Peña JV, Carrillo JM (2005) Late quaternary large-scale rotational slides induced by river incision: the Arroyo de Gor area (Guadix basin, SE Spain). Geomorphology 69:152–168

    Article  Google Scholar 

  2. Badura J, Zuchiewicz W, Ơtěpančiková P, Przybylski B, Kontny B, CacoƄ S (2007) The Sudetic Marginal Fault: a young morphophotectonic feature at the ne margin of the Bohemian Massif, Central Europe. Acta Geodynamica et Geomaterialia 148:7–29

    Google Scholar 

  3. Bajgier-Kowalska M, Zietara T (2002) Sukcesja ruchów osuwiskowych w ostatnim 5-leciu w Karapatach fliszowych [in Polish: the sequence of landsliding over the last 5 years in the Polish Flysch Carpathians]. Problemy Zagospodarowania Ziem Górskich 48:31–42

    Google Scholar 

  4. Bajgier-Kowalska M, Zietara T (2008) WpƂyw gwaƂtownych opadĂłw na modelowanie rzeĆșby w Dolinie Koƛcieliskiej w Tatrach Zachodnich [in Polish: The impact of abrupt precipitation on the shape of relief in the Koƛcieliska Valley in the Western Tatra Mts.]. Land Anal 8:5–8

    Google Scholar 

  5. Bober L (1984) Rejony osuwiskowe w polskich Karpatach fliszowych i ich związek z budową geologiczną regionu [in Polish: Landslide regions in the Polish Flysch Carpathians and their relation with geological composition of the region]. Biuletyn Instytutu Geologicznego 340:115–158

    Google Scholar 

  6. Bookhagen B, Thiede RC, Strecker MR (2005) Late quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33:149–152

    Article  Google Scholar 

  7. Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf Proc Land 28:925–950

    Article  Google Scholar 

  8. Chang K-T, Chiang S-H, Hsu ML (2007) Modeling typhoon—and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347

    Article  Google Scholar 

  9. Chrost A (2006) Geomorfologiczny i dendrochronologiczny zapis ekstremalnych zjawisk hydrologicznych w masywie Keprnika, Sudety Wschodnie; rola klimatu i czƂowieka [Geomorphological and dendrochronological record of extreme hydrological events in the Keprnik Massif, Eastern Sudetes—impact of climate and human activity]. In: Latocha A, Traczyk A (eds) Zapis dziaƂalnoƛci czƂowieka w ƛrodowisku przyrodniczym. Metody badaƄ i studia przypadków. University of WrocƂaw, WrocƂaw, pp 77–83

    Google Scholar 

  10. Coulthard TJ, Lewin J, Macklin MG (2005) Modelling differential catchment response to environmental change. Geomorphology 69:222–241

    Article  Google Scholar 

  11. Coulthard TJ, Macklin MG, Kirkby MJ (2002) A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surf Proc Land 27:269–288

    Article  Google Scholar 

  12. Crozier MJ (1989) Landslides: causes, consequences and environment. Routledge, London

    Google Scholar 

  13. Crozier MJ (2010) Landslide geomorphology: an argument for recognition, with examples from New Zealand. Geomorphology 120:3–15

    Article  Google Scholar 

  14. Crozier MJ, Glade T (1999) Frequency and magnitude of landsliding: fundamental research issues. Zeitschrift fĂŒr Geomorphologie, Supplement Band 115:141–155

    Google Scholar 

  15. Dadson SJ, Church M (2005) Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model. Earth Surf Proc Land 30:1387–1403

    Article  Google Scholar 

  16. Dai FC, Lee CF, Deng JH, Tham LG (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 65:205–221

    Article  Google Scholar 

  17. Dauksza L, Kotarba A (1973) An analysis of the influence of fluvial erosion in the development of a landslide slope (using the application of the queueing theory). Studia Geomorphologica Carpatho-Balacanica 7:91–104

    Google Scholar 

  18. Davis WM (1899) The geographical cycle. Geogr J 14:481–504

    Article  Google Scholar 

  19. Densmore AL, Anderson RS, McAdoo BG, Ellis MA (1997) Hillslope evolution by bedrock landslides. Science 275:369–372

    Article  Google Scholar 

  20. Densmore AL, Ellis MA, Anderson RS (1998) Landsliding and the evolution of normal-fault-bounded mountains. J Geophys Res 103:15203–15219

    Article  Google Scholar 

  21. DiBiase RA, Heimsath AM, Whipple KX (2012) Hillslope response to tectonic forcing in threshold landscapes. Earth Surf Proc Land 37(8):855–865

    Google Scholar 

  22. Dietrich WE, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Zeitschrift fĂŒr Geomorphologie, Supplement Band 29:191–206

    Google Scholar 

  23. DƂugosz M, Gębica P (2008) Geomorfologiczne skutki oraz rola lokalnych ulew i powodzi w ksztaƂtowaniu rzeĆșby progu PogĂłrza Karpackiego (na przykƂadzie ulewy z czerwca 2006 r. w rejonie Sędziszowa MƂp.) [in Polish: Geomorphic effects and importance of local torrential downpours and floods in moulding relief of the edge of Carpathian foothills (an example of a downpour in June 2006 in the area of SędziszĂłw MƂp.)]. Land Anal 8:13–20

    Google Scholar 

  24. Dong J-J, Li Y-S, Kuo C-Y, Sung R-T, Li M-H, Lee C-T, Chen C-C, Lee W-R (2011) The formation and breach of a short-lived landslide dam at Hsiaolin village, Taiwan—part I: post-event reconstruction of dam geometry. Eng Geol 123:40–59

    Article  Google Scholar 

  25. Dotterweich M (2008) The history of soil erosion and fluvial deposits in small catchments of central Europe: deciphering the long-term interaction between humans and the environment—a review. Geomorphology 101:192–208

    Article  Google Scholar 

  26. Fort M, Cossart E, Arnaud-Fassetta G (2010) Hillslope-channel coupling in the Nepal Himalayas and threat to man-made structures: the middle Kali Gandaki valley. Geomorphology 124:178–199

    Article  Google Scholar 

  27. Gába Z (1992) Mury pod Keprníkem v červenci 1991 [in Czech: Debris flows in the Keprník Massif in July 1991]. Severní Morava 64:43–50

    Google Scholar 

  28. German K (1998) Przebieg wezbrania i powodzi 9 lipca 1997 roku w okolicach Ć»egociny oraz ich skutki w krajobrazie [in Polish: The course of flood on 09. 07. 1997 in the vicinity of Ć»egocina and its impact on the landscape]. In: Starkel L, Grela J (eds) PowĂłdĆș w dorzeczu gĂłrnej WisƂy w lipcu 1997 roku. Polish Academy of Sciences, KrakĂłw, pp 177–184

    Google Scholar 

  29. Gil E, Gilot E, Kotarba A, Starkel L, Szczepanek K (1974) An early Holocene landslidein the Beskid Niski and its significance for palaeogeographical reconstructions. Studia Geomorphologica Carpatho-Balcanica 8:69–83

    Google Scholar 

  30. Gil E, Kotarba A (1977) Model of slide slope evolution in flysch mountains (an example drawn from the Polish Carpathians). Catena 4:233–248

    Article  Google Scholar 

  31. Gorczyca E (2004) PrzeksztaƂcanie stoków fliszowych przez ruchy masowe podczas katastrofalnych opadów (dorzecze Ɓososiny) [in Polish: Transformation of flysch slopes through mass movements during catastrophic precipitation (Ɓososina River Basin). Jagiellonian University, Kraków

    Google Scholar 

  32. Gorczyca E (2010) Slope relaxation following landslides in the Ɓososina River Basin, Beskid Wyspowy Mts., Poland. Land Anal 14:3–11

    Google Scholar 

  33. Gorczyca E, KrzemieƄ K (2008) Morfologiczne skutki ekstremalnego zdarzenia opadowego w Tatrach Reglowych w czerwcu 2007 r [in Polish: Geomorphic effects of an extreeme rainfall event in Tatry Reglowe Mts. in June 2007]. Land Anal 8:21–24

    Google Scholar 

  34. Gorczyca E, WroƄska-WaƂach D (2008) Transformacja maƂych zlewni górskich podczas opadowych zdarzeƄ ekstremalnych (Bieszczady) [in Polish: Shaping relief of small mountain catchments during extreme precipitation events (Bieszczady Mts.)]. Land Anal 8:25–28

    Google Scholar 

  35. Guglielmi Y, Cappa F (2010) Regional-scale relief evolution and large landslides: Insights from geomechanical analyses in the TinĂ©e Valley (southern French Alps). Geomorphology 117:121–129

    Article  Google Scholar 

  36. Harvey AM (2007) Differential recovery from the effects of a 100-year storm: significance of long-term hillslope–channel coupling; Howgill Fells, northwest England. Geomorphology 84:192–208

    Article  Google Scholar 

  37. Hewitt K (1998) Catastrophic landslides and their effects on the upper Indus streams, Karakorum Himalaya, northern Pakistan. Geomorphology 26:47–80

    Article  Google Scholar 

  38. Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci Rev 87:1–38

    Article  Google Scholar 

  39. Johnson RM, Warburton J, Mills AJ (2008) Hillslope–channel sediment transfer in a slope failure event: Wet Swine Gill, Lake District, northern England. Earth Surf Proc Land 33:394–413

    Article  Google Scholar 

  40. Kasprzak M (2008) Strefy erozji i akumulacji podczas fluwialnych zdarzeƄ ekstremalnych w Sudetach, przykƂad Wilczej Poręby w Karpaczu [in Polish: zones of erosion and accumulation during extreme fluvial events in Sudetes Mts., example of Wilcza Poręba in Karapcz]. Land Anal 8:36–40

    Google Scholar 

  41. Kasprzak M (2009) Geomorfologia stoĆŒka Wilczej Poręby w Karkonoszach [in Polish: Geomorphology of the Wilcza Poręba fan in the Karkonosze Mts.]. Opera Corcontica 46:19–39

    Google Scholar 

  42. Kimura M, Hoffmann T (2008) Hillslope-channel coupling in a landslide dominated catchment (Nakatsu, Japan): simplicity or complexity? Geophysical Research Abstracts 10. EGU General Assembly 2008, Vienna. http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/09315/EGU2008-A-09315.pdf

  43. Klimek K (1992) Historic slope degradation above timberline in the Balkan Mts., Bulgaria. Geographia Polonica 60:43–62

    Google Scholar 

  44. Klimek K (1999) A 1000 year alluvial sequence as an indicator of catchment/floodplain interaction: the Ruda Valley, Sub-Carpathians, Poland. In: Brown AG, Quine TA (eds) Fluvial processes and environmental change. Wiley, Chichester, pp 329–343

    Google Scholar 

  45. Klimek K (2004) Transport pokryw stokowych z NE skƂonu Jesioników (Sudety Wschodnie) pod wpƂywem zdarzeƄ antropogenicnych i impulsów klimatycznych [in Polish: Transfer of slope covers from the NE slopes of Jesioniki Mts. (Eastern Sudetes) triggered by extreme human-induced and climatic events]. Przegląd Geologiczny 52:1080–1081

    Google Scholar 

  46. Klimek K, Latocha A (2007) Response of small mid-mountain rivers to human impact with particular reference to the last 200 years; Eastern Sudetes, Central Europe. Geomorphology 92:147–165

    Article  Google Scholar 

  47. Klimek K, Malik I (2005) Geomorfologiczne skutki wylesieƄ w górach ƛrednich: wiele problemów w maƂej zlewni, Jesioniki [in Polish: Geomorphic effects of forest clearance in mid-mountains: many problems in a small catchment, Jesioniki Mts.]. Human Impact Mid-Mt Ecosyst 1:31–36

    Google Scholar 

  48. Klimek K, Malik I, Owczarek P, Zygmunt E (2003) Climatic and human impact on episodic alluviation in small mountain valleys, the Sudetes. Geographia Polonica 76(2):55–64

    Google Scholar 

  49. Koi T, Hotta N, Ishigaki I, Matuzaki N, Uchiyama Y, Suzuki M (2008) Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: the Tanzawa region, Japan. Geomorphology 101:692–702

    Article  Google Scholar 

  50. Korup O (2004) Landslide-induced river channel avulsions in mountain catchments of southwest New Zealand. Geomorphology 63:57–80

    Article  Google Scholar 

  51. Korup O (2005) Geomorphic imprint of landslides on alpine river systems, southwest New Zealand. Earth Surf Proc Land 30:783–800

    Article  Google Scholar 

  52. Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120:77–90

    Article  Google Scholar 

  53. Korup O, Strom AL, Weidinger JT (2006) Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology 78:3–21

    Article  Google Scholar 

  54. Kotarba A (1986) Rola osuwisk w modelowaniu rzeĆșby Beskidzkiej i pogĂłrskiej [in Polish: The role of landslides in moulding relief of Beskidy Mts. and their foreland]. Przegląd Geograficzny 58(1-2):119–129

    Google Scholar 

  55. Kukulak J (2002) Sedimentary record of early wood burning in alluvia of mountain streams in the Bieszczady range, Polish Carpathians. Palaeogeogr Palaeoclimatol Paleoecol 164:167–175

    Article  Google Scholar 

  56. Kukulak J (2004) Zapis skutków osadnictwa i gospodarki rolnej w osadach rzeki górskiej na przykƂadzie aluwiów dorzecza górnego Sanu w Bieszczadach Wysokich [in Polish: Record of colonisation and agriculture in deposits of a mountain river, an example of upper San basin in Bieszczady Wysokie Mts.]. Pedagogical University, Kraków, pp 1–127

    Google Scholar 

  57. Lague D, Crave A, Davy P (2003) Laboratory experiments simulating the geomorphic response to tectonic uplift. J Geophys Res 108:115–134

    Google Scholar 

  58. Latocha A (2007) Przemiany ƚrodowiska Przyrodniczego W Sudetach Wschodnich W Warunkach Antropopresji [in Polisch: changes of environment in the Eastern Sudetes due to human impact]. University of WrocƂaw, WrocƂaw, pp 1–215

    Google Scholar 

  59. Latocha A (2009) Land-use changes and longer-term human-environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology 108:48–57

    Article  Google Scholar 

  60. LĂ©vy S, Jaboyedoff M, Locat J, Demers D (2012) Erosion and channel change as factors of landslides and valley formation in Champlain Sea Clays: The Chacoura River, Quebec, Canada. Geomorphology 145–146:12–18

    Article  Google Scholar 

  61. Lin G-W, Chen H, Hovius N, Horng M-J, Dadson S, Meunier P, Lines M (2008) Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surf Proc Land 33:1354–1373

    Article  Google Scholar 

  62. Malik I (2008) Dendrochronologiczny zapis wspóƂczesnych procesĂłw rzeĆșbotwĂłrczych ksztaƂtujących stoki i doliny rzeczne wybranych stref krajobrazowych Europy ƚrodkowej [in Polish: Dendrochronological record of contemporary geomorphic processes shaping relief of slopes and river valleys of selected landscape zones of Central Europe]. University of Silesia, Katowice

    Google Scholar 

  63. Margielewski W (1991) Landslide forms on PoƂoma Mountain in the Sine Wiry Nature Reserve, West Bieszczady. Ochrona Przyrody 49:23–29

    Google Scholar 

  64. Meyer NK, Blöthe JH, Brennecke M, Bell R, Hoffmann T (2009) Basin-scale analysis of hillslope-channel coupling in a cuesta landscape (Swabian Alb, SW-Germany). Geophysical Research Abstracts 11, EGU General Assembly 2009, Vienna. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-6276.pdf

  65. MigoƄ P (2006) Geomorfologia [in Polish: Geomorphology]. PWN, Warszawa

    Google Scholar 

  66. MigoƄ P (2008) WspóƂczesna ewolucja rzeĆșby SudetĂłw i ich PrzedgĂłrza [in Polish: Contemporary evolution of relief in Sudety Mts. and their foreland]. In: Starkel L, Kostrzewski A, Kotarba A, KrzemieƄ K (eds) WspóƂczesne Przemiany rzeĆșby Polski. Association of Polish Geomorphologists, Jagiellonian University, Polish Acadademy of Sciences, KrakĂłw, pp 135–161

    Google Scholar 

  67. MigoƄ P, Kasprzak M (2011) Using LiDar to detect landslide remnants under forest: a study from southwestern Poland. Abstract volume, IAG/AIG regional conference 2011. Geomorphology for human adaptation in changing tropical environments, Addis Ababa, Ethiopia, pp 98–98

    Google Scholar 

  68. MigoƄ P, PĂĄnek T, Malik I, HrĂĄdeckĂœ J, Owczarek P, Ć ilhĂĄn K (2010) Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124:200–214

    Article  Google Scholar 

  69. Mrozek T, Rączkowski W, Limanówka D (2000) Recent landslides and triggering climatic conditions in Laskowa and Pleƛna Region. Studia Geomorphologica Carpatho-Balcanica 34:89–112

    Google Scholar 

  70. Nowalnicki T (1971) Beskidzkie jeziorka zaporowe [in Polish: Landslide-dammed lakes of the Beskidy Mts.]. Wierchy 40:274–280

    Google Scholar 

  71. Nowalnicki T (1976) Jeziorka osuwiskowe w Beskidzie Sądeckim [in Polish: Landslide-connected lakes in Beskid Sądecki Mts.]. Wierchy 45:182–198

    Google Scholar 

  72. Oberc J (1957) Rejon GĂłr Bardzkich [in Polish: Region of Bardzkie Mts.]. Wydawnictwa Geologiczne, Warszawa

    Google Scholar 

  73. Ouimet WB, Whipple KX, Crosby BT, Johnson JP, Schildgen TF (2008) Epigenetic gorges in fluvial landscapes. Earth Surf Proc Land 33:1993–2009

    Article  Google Scholar 

  74. Owczarek P (2007) Transformacja Koryt Rzecznych W Warunkach Dostawy Grubofrakcyjnego MateriaƂu Stokowego (Na PrzykƂadzie ƚredniogórskich DopƂywów Odry I WisƂy) [in Polish: River channel transformation in conditions of the delivery of coarse-grained slope material (an example of mid-mountain tributaries of Oder and Vistula)]. University of Silesia, Katowice

    Google Scholar 

  75. Parzóch K, MigoƄ P, Szymanowski R, Gąsiorek M (2007) SpƂywy gruzowe w póƂnocnej częƛci Karkonoszy [in Polish: Debris flows in norther part of Karkonosze Mts.]. Opera Corcontica 44(1):81–88

    Google Scholar 

  76. PĂĄnek T, HradeckĂœ J, MinĂĄr J, Hungr O, DuĆĄek R (2009) Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysh: Ropice Mountain, Czech Republic. Geomorphology 103:414–429

    Article  Google Scholar 

  77. PĂĄnek T, HradeckĂœ J, Ć ilhĂĄn K (2009) Geomorphic evidence of ancient catastrophic flow type landslides in the mid-mountain ridges of the Western Flysch Carpathian Mountains (Czech Republic). Int J Sedim Res 24:88–98

    Article  Google Scholar 

  78. PĂĄnek T, SmolkovĂĄ V, HradeckĂœ J, Kirchner K (2007) Landslide dams in the northern part of Czech Flysch Carpathians: geomorphic evidences and imprints. Studia Geomorphologica Carpatho-Balcanica 41:77–96

    Google Scholar 

  79. Penck W (1973) Morphological analysis of land forms: a contribution to physical geology. Collier Macmillan Publishers, London (Translated from German by Czech H and Boswell KC)

    Google Scholar 

  80. Remisz J, Bijak S, Parzóch K, Witek M (2012) Could we expect it?—ƚredniak landslide case study. In: TRACE Tree rings in archaeology, climatology and ecology. Program and abstracts of the dendrosymposium 2012. Association for Tree-Ring Research, Potsdam, pp 114–114

    Google Scholar 

  81. Roering JJ, Kirchner JW, Dietrich WE (1999) Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resour Res 35:853–870

    Article  Google Scholar 

  82. Schlunegger F, Detzner K, Olsson D (2002) The evolution towards steady state erosion in a soil-mantled drainage basin: semi-quantitative data from a transient landscape in the Swiss Alps. Geomorphology 43:55–76

    Article  Google Scholar 

  83. Schneider JF, Gruber FE, Mergili M (2013) Recent cases and geomorphic evidence of landslide-dammed lakes and related hazards in the mountains of Central Asia. In: Margottini C (ed) Landslide science and practice 6. Springer, Berlin, Heidelberg, pp 57–64

    Google Scholar 

  84. Selby MJ (1974) Dominant geomorphic events in landform evolution. Bull Int Assoc Eng Geol 9:85–89

    Article  Google Scholar 

  85. Skempton AW (1953) Soil mechanics in relation to geology. Proc Yorkshire Geol Soc 29(1, 3):33–62

    Google Scholar 

  86. Starkel L (1960) RozwĂłj rzeĆșby Karpat fliszowych w holocenie [in Polish: The evolution of relief of the Flysch Carpathians over the Holocene]. Prace Geograficzne 22. Polish Academy of Sciences, KrakĂłw

    Google Scholar 

  87. Starkel L (1998) Funkcja powodzi w ƛrodowisku przyrodniczym dorzecza gĂłrnej WisƂy [in Polish: The role of flood in upper Vistula basin in July 1997]. In: Starkel L, Grela J (eds) PowĂłdĆș w dorzeczu gĂłrnej WisƂy w lipcu 1997 roku. Polish Academy of Sciences, KrakĂłw, pp 9–20

    Google Scholar 

  88. Synowiec G (2003) Formy osuwiskowe w Górach Kamiennych [in Polish: Landslides in Kamienne Mts.]. Przegląd Geologiczny 51:59–65

    Google Scholar 

  89. Ć ilhĂĄn K, PĂĄnek T (2010) Dynamics of debris flows in the culmination parts of the MoravskoslezskĂ© Beskydy Mts. Studia Geomorphologica Carpatho-Balcanica 44:49–60

    Google Scholar 

  90. Ć ilhĂĄn K, Stacke V (2011) Erosion-accumulation processes on an alluvial fan: a case study from the Moravsko-SlezskĂ© Beskydy Mts. (Czech Republic) based on dendrogeomorphological methods. Moravian Geogr Rep 19(2):18–29

    Google Scholar 

  91. Ć těpančíkovĂĄ P, Stemberk J, VilĂ­mek V, KoĆĄĆ„ĂĄk B (2008) Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic). Geomorphology 102:68–80

    Article  Google Scholar 

  92. Tang C, Zhu J, Qi X, Ding J (2011) Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: a case study in the Beichuan area of China. Eng Geol 122:22–33

    Article  Google Scholar 

  93. Walczak W (1972) Sudety i PrzedgĂłrze Sudeckie [in Polish: The Sudetes and Sudetic Foreland]. In: Klimaszewski M (ed) Geomorfologia Polski 1. Polska PoƂudniowa. GĂłry i WyĆŒyny. PWN, Warszawa, pp 167–231

    Google Scholar 

  94. WroƄska-WaƂach D (2009) Dendrogeomorphological analysis of a headwater area in the Gorce Mountains. Studia Geomorphologica Carpatho-Balcanica 43:97–114

    Google Scholar 

  95. WroƄska-WaƂach D (2010) WyksztaƂcenie i funkcjonowanie lejĂłw ĆșrĂłdƂowych w gĂłrach ƛrednich (na przykƂadzie wybranych obszarĂłw Karpat fliszowych) [in Polish: Relief and activity of valley heads in mid-altitude mountains (example of selected areas of the Flysch Carpathians)]. Unpublished PhD thesis, Jagiellonian University, KrakĂłw

    Google Scholar 

  96. Zielonka T, Dubaj N (2009) A tree-ring reconstruction of geomorphic disturnaces in Cliff forests in the Tatra Mts. Land Anal 11:71–76

    Google Scholar 

  97. Ziętara T (1968) Rola gwaƂtownych ulew i powodzi w modelowaniu rzeĆșby BeskidĂłw [in Polish: The importance of heavy rainfall events and floods in moulding relief of Beskidy Mts.]. Prace Geograficzne Instytutu Geografii 60. Polish Academy of Sciences, KrakĂłw

    Google Scholar 

  98. Ziętara T (1999) WpƂyw procesów stokowych na procesy fluwialne w czasie gwaƂtownych ulew i powodzi na przykƂadzie dorzecza SoƂy [in Polish: The impact of slope processes on fluvial processes during sudden rainfall events and floods on the example of SoƂa basin]. In: CheƂmicki W, Pocisk-Karteczka J (eds) Interdyscyplinarnoƛć w badaniach dorzecza. Jagiellonian University, Kraków, pp 231–243

    Google Scholar 

  99. Zuchiewicz W (2010) Neotektonika Karpat Polskich I Zapadliska Przedkarpackiego [in Polish: Neotectonics of the Polish Carpathians and Carpathian Foredeep]. AGH University of Science and Technology, KrakĂłw

    Google Scholar 

  100. Ć»urawek R (1999) Zmiany erozyjne w dolinach rzek SudetĂłw KƂodzkich wywoƂane powodziami w lipcu 1997 r. oraz w lipcu 1998 r [in Polish: Changes in erosion in river valleys of Sudetes, KƂodzko region caused by floods in July 1997 and July 1998]. Problemy Zagospodarowania Ziem GĂłrskich 45:43–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaƂgorzata Wistuba .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wistuba, M. (2014). The Evolution of Relief in Mid-Altitude Mountains as a Result of the Delivery of Slope Material to Valley Floors: Discussion. In: Slope-Channel Coupling as a Factor in the Evolution of Mountains. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05819-1_5

Download citation

Publish with us

Policies and ethics