Advertisement

The Evolution of Relief in Mid-Altitude Mountains as a Result of the Delivery of Slope Material to Valley Floors: Discussion

Chapter
  • 268 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

On the base of observed course of slope material delivery into valley floors in small mid-mountain catchments, the formation of relief under the impact of slope-channel coupling was discussed. The results of the studies presented in this thesis indicate that the transfer of slope material into valley floors and coupling between slope and fluvial sub-systems are common factors shaping the relief of mid-altitude mountains. The delivery of slope material influences the relief both in valley heads in the middle zones of catchments and on outlet fans. The widespread occurrence of coupling between slopes and channels on the small catchments studied and its significant role in development of relief within particular zones of catchments suggest that coupling can be a factor important in the evolution of the relief of whole catchments, and through these whole mountain ranges. Therefore in the chapter, I have attempted to prepare a schema of evolution of mid-mountain relief due to the interaction of slopes and stream channels in small catchments. Detailed results of the thesis are discussed here as the premises of the schema. The schema itself is presented to describe the evolution of mid-mountain landscape through gradual transformation of valley heads into the middle zone and the middle zone into outlet fans. This was discussed taking into account the influence of geological setting, human impact, climate change and tectonic activity. Using the results obtained from the ten catchments analysed and data obtained from the literature review, a proposition was made that the established model may describe a general rule for the evolution of mid-mountain landscape.

Keywords

Debris Flow Stream Channel Valley Floor Middle Zone Small Catchment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Azañón JM, Azor A, Pérez-Peña JV, Carrillo JM (2005) Late quaternary large-scale rotational slides induced by river incision: the Arroyo de Gor area (Guadix basin, SE Spain). Geomorphology 69:152–168CrossRefGoogle Scholar
  2. 2.
    Badura J, Zuchiewicz W, Štěpančiková P, Przybylski B, Kontny B, Cacoń S (2007) The Sudetic Marginal Fault: a young morphophotectonic feature at the ne margin of the Bohemian Massif, Central Europe. Acta Geodynamica et Geomaterialia 148:7–29Google Scholar
  3. 3.
    Bajgier-Kowalska M, Zietara T (2002) Sukcesja ruchów osuwiskowych w ostatnim 5-leciu w Karapatach fliszowych [in Polish: the sequence of landsliding over the last 5 years in the Polish Flysch Carpathians]. Problemy Zagospodarowania Ziem Górskich 48:31–42Google Scholar
  4. 4.
    Bajgier-Kowalska M, Zietara T (2008) Wpływ gwałtownych opadów na modelowanie rzeźby w Dolinie Kościeliskiej w Tatrach Zachodnich [in Polish: The impact of abrupt precipitation on the shape of relief in the Kościeliska Valley in the Western Tatra Mts.]. Land Anal 8:5–8Google Scholar
  5. 5.
    Bober L (1984) Rejony osuwiskowe w polskich Karpatach fliszowych i ich związek z budową geologiczną regionu [in Polish: Landslide regions in the Polish Flysch Carpathians and their relation with geological composition of the region]. Biuletyn Instytutu Geologicznego 340:115–158Google Scholar
  6. 6.
    Bookhagen B, Thiede RC, Strecker MR (2005) Late quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33:149–152CrossRefGoogle Scholar
  7. 7.
    Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf Proc Land 28:925–950CrossRefGoogle Scholar
  8. 8.
    Chang K-T, Chiang S-H, Hsu ML (2007) Modeling typhoon—and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347CrossRefGoogle Scholar
  9. 9.
    Chrost A (2006) Geomorfologiczny i dendrochronologiczny zapis ekstremalnych zjawisk hydrologicznych w masywie Keprnika, Sudety Wschodnie; rola klimatu i człowieka [Geomorphological and dendrochronological record of extreme hydrological events in the Keprnik Massif, Eastern Sudetes—impact of climate and human activity]. In: Latocha A, Traczyk A (eds) Zapis działalności człowieka w środowisku przyrodniczym. Metody badań i studia przypadków. University of Wrocław, Wrocław, pp 77–83Google Scholar
  10. 10.
    Coulthard TJ, Lewin J, Macklin MG (2005) Modelling differential catchment response to environmental change. Geomorphology 69:222–241CrossRefGoogle Scholar
  11. 11.
    Coulthard TJ, Macklin MG, Kirkby MJ (2002) A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surf Proc Land 27:269–288CrossRefGoogle Scholar
  12. 12.
    Crozier MJ (1989) Landslides: causes, consequences and environment. Routledge, LondonGoogle Scholar
  13. 13.
    Crozier MJ (2010) Landslide geomorphology: an argument for recognition, with examples from New Zealand. Geomorphology 120:3–15CrossRefGoogle Scholar
  14. 14.
    Crozier MJ, Glade T (1999) Frequency and magnitude of landsliding: fundamental research issues. Zeitschrift für Geomorphologie, Supplement Band 115:141–155Google Scholar
  15. 15.
    Dadson SJ, Church M (2005) Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model. Earth Surf Proc Land 30:1387–1403CrossRefGoogle Scholar
  16. 16.
    Dai FC, Lee CF, Deng JH, Tham LG (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 65:205–221CrossRefGoogle Scholar
  17. 17.
    Dauksza L, Kotarba A (1973) An analysis of the influence of fluvial erosion in the development of a landslide slope (using the application of the queueing theory). Studia Geomorphologica Carpatho-Balacanica 7:91–104Google Scholar
  18. 18.
    Davis WM (1899) The geographical cycle. Geogr J 14:481–504CrossRefGoogle Scholar
  19. 19.
    Densmore AL, Anderson RS, McAdoo BG, Ellis MA (1997) Hillslope evolution by bedrock landslides. Science 275:369–372CrossRefGoogle Scholar
  20. 20.
    Densmore AL, Ellis MA, Anderson RS (1998) Landsliding and the evolution of normal-fault-bounded mountains. J Geophys Res 103:15203–15219CrossRefGoogle Scholar
  21. 21.
    DiBiase RA, Heimsath AM, Whipple KX (2012) Hillslope response to tectonic forcing in threshold landscapes. Earth Surf Proc Land 37(8):855–865Google Scholar
  22. 22.
    Dietrich WE, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Zeitschrift für Geomorphologie, Supplement Band 29:191–206Google Scholar
  23. 23.
    Długosz M, Gębica P (2008) Geomorfologiczne skutki oraz rola lokalnych ulew i powodzi w kształtowaniu rzeźby progu Pogórza Karpackiego (na przykładzie ulewy z czerwca 2006 r. w rejonie Sędziszowa Młp.) [in Polish: Geomorphic effects and importance of local torrential downpours and floods in moulding relief of the edge of Carpathian foothills (an example of a downpour in June 2006 in the area of Sędziszów Młp.)]. Land Anal 8:13–20Google Scholar
  24. 24.
    Dong J-J, Li Y-S, Kuo C-Y, Sung R-T, Li M-H, Lee C-T, Chen C-C, Lee W-R (2011) The formation and breach of a short-lived landslide dam at Hsiaolin village, Taiwan—part I: post-event reconstruction of dam geometry. Eng Geol 123:40–59CrossRefGoogle Scholar
  25. 25.
    Dotterweich M (2008) The history of soil erosion and fluvial deposits in small catchments of central Europe: deciphering the long-term interaction between humans and the environment—a review. Geomorphology 101:192–208CrossRefGoogle Scholar
  26. 26.
    Fort M, Cossart E, Arnaud-Fassetta G (2010) Hillslope-channel coupling in the Nepal Himalayas and threat to man-made structures: the middle Kali Gandaki valley. Geomorphology 124:178–199CrossRefGoogle Scholar
  27. 27.
    Gába Z (1992) Mury pod Keprníkem v červenci 1991 [in Czech: Debris flows in the Keprník Massif in July 1991]. Severní Morava 64:43–50Google Scholar
  28. 28.
    German K (1998) Przebieg wezbrania i powodzi 9 lipca 1997 roku w okolicach Żegociny oraz ich skutki w krajobrazie [in Polish: The course of flood on 09. 07. 1997 in the vicinity of Żegocina and its impact on the landscape]. In: Starkel L, Grela J (eds) Powódź w dorzeczu górnej Wisły w lipcu 1997 roku. Polish Academy of Sciences, Kraków, pp 177–184Google Scholar
  29. 29.
    Gil E, Gilot E, Kotarba A, Starkel L, Szczepanek K (1974) An early Holocene landslidein the Beskid Niski and its significance for palaeogeographical reconstructions. Studia Geomorphologica Carpatho-Balcanica 8:69–83Google Scholar
  30. 30.
    Gil E, Kotarba A (1977) Model of slide slope evolution in flysch mountains (an example drawn from the Polish Carpathians). Catena 4:233–248CrossRefGoogle Scholar
  31. 31.
    Gorczyca E (2004) Przekształcanie stoków fliszowych przez ruchy masowe podczas katastrofalnych opadów (dorzecze Łososiny) [in Polish: Transformation of flysch slopes through mass movements during catastrophic precipitation (Łososina River Basin). Jagiellonian University, KrakówGoogle Scholar
  32. 32.
    Gorczyca E (2010) Slope relaxation following landslides in the Łososina River Basin, Beskid Wyspowy Mts., Poland. Land Anal 14:3–11Google Scholar
  33. 33.
    Gorczyca E, Krzemień K (2008) Morfologiczne skutki ekstremalnego zdarzenia opadowego w Tatrach Reglowych w czerwcu 2007 r [in Polish: Geomorphic effects of an extreeme rainfall event in Tatry Reglowe Mts. in June 2007]. Land Anal 8:21–24Google Scholar
  34. 34.
    Gorczyca E, Wrońska-Wałach D (2008) Transformacja małych zlewni górskich podczas opadowych zdarzeń ekstremalnych (Bieszczady) [in Polish: Shaping relief of small mountain catchments during extreme precipitation events (Bieszczady Mts.)]. Land Anal 8:25–28Google Scholar
  35. 35.
    Guglielmi Y, Cappa F (2010) Regional-scale relief evolution and large landslides: Insights from geomechanical analyses in the Tinée Valley (southern French Alps). Geomorphology 117:121–129CrossRefGoogle Scholar
  36. 36.
    Harvey AM (2007) Differential recovery from the effects of a 100-year storm: significance of long-term hillslope–channel coupling; Howgill Fells, northwest England. Geomorphology 84:192–208CrossRefGoogle Scholar
  37. 37.
    Hewitt K (1998) Catastrophic landslides and their effects on the upper Indus streams, Karakorum Himalaya, northern Pakistan. Geomorphology 26:47–80CrossRefGoogle Scholar
  38. 38.
    Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci Rev 87:1–38CrossRefGoogle Scholar
  39. 39.
    Johnson RM, Warburton J, Mills AJ (2008) Hillslope–channel sediment transfer in a slope failure event: Wet Swine Gill, Lake District, northern England. Earth Surf Proc Land 33:394–413CrossRefGoogle Scholar
  40. 40.
    Kasprzak M (2008) Strefy erozji i akumulacji podczas fluwialnych zdarzeń ekstremalnych w Sudetach, przykład Wilczej Poręby w Karpaczu [in Polish: zones of erosion and accumulation during extreme fluvial events in Sudetes Mts., example of Wilcza Poręba in Karapcz]. Land Anal 8:36–40Google Scholar
  41. 41.
    Kasprzak M (2009) Geomorfologia stożka Wilczej Poręby w Karkonoszach [in Polish: Geomorphology of the Wilcza Poręba fan in the Karkonosze Mts.]. Opera Corcontica 46:19–39Google Scholar
  42. 42.
    Kimura M, Hoffmann T (2008) Hillslope-channel coupling in a landslide dominated catchment (Nakatsu, Japan): simplicity or complexity? Geophysical Research Abstracts 10. EGU General Assembly 2008, Vienna. http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/09315/EGU2008-A-09315.pdf
  43. 43.
    Klimek K (1992) Historic slope degradation above timberline in the Balkan Mts., Bulgaria. Geographia Polonica 60:43–62Google Scholar
  44. 44.
    Klimek K (1999) A 1000 year alluvial sequence as an indicator of catchment/floodplain interaction: the Ruda Valley, Sub-Carpathians, Poland. In: Brown AG, Quine TA (eds) Fluvial processes and environmental change. Wiley, Chichester, pp 329–343Google Scholar
  45. 45.
    Klimek K (2004) Transport pokryw stokowych z NE skłonu Jesioników (Sudety Wschodnie) pod wpływem zdarzeń antropogenicnych i impulsów klimatycznych [in Polish: Transfer of slope covers from the NE slopes of Jesioniki Mts. (Eastern Sudetes) triggered by extreme human-induced and climatic events]. Przegląd Geologiczny 52:1080–1081Google Scholar
  46. 46.
    Klimek K, Latocha A (2007) Response of small mid-mountain rivers to human impact with particular reference to the last 200 years; Eastern Sudetes, Central Europe. Geomorphology 92:147–165CrossRefGoogle Scholar
  47. 47.
    Klimek K, Malik I (2005) Geomorfologiczne skutki wylesień w górach średnich: wiele problemów w małej zlewni, Jesioniki [in Polish: Geomorphic effects of forest clearance in mid-mountains: many problems in a small catchment, Jesioniki Mts.]. Human Impact Mid-Mt Ecosyst 1:31–36Google Scholar
  48. 48.
    Klimek K, Malik I, Owczarek P, Zygmunt E (2003) Climatic and human impact on episodic alluviation in small mountain valleys, the Sudetes. Geographia Polonica 76(2):55–64Google Scholar
  49. 49.
    Koi T, Hotta N, Ishigaki I, Matuzaki N, Uchiyama Y, Suzuki M (2008) Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: the Tanzawa region, Japan. Geomorphology 101:692–702CrossRefGoogle Scholar
  50. 50.
    Korup O (2004) Landslide-induced river channel avulsions in mountain catchments of southwest New Zealand. Geomorphology 63:57–80CrossRefGoogle Scholar
  51. 51.
    Korup O (2005) Geomorphic imprint of landslides on alpine river systems, southwest New Zealand. Earth Surf Proc Land 30:783–800CrossRefGoogle Scholar
  52. 52.
    Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120:77–90CrossRefGoogle Scholar
  53. 53.
    Korup O, Strom AL, Weidinger JT (2006) Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology 78:3–21CrossRefGoogle Scholar
  54. 54.
    Kotarba A (1986) Rola osuwisk w modelowaniu rzeźby Beskidzkiej i pogórskiej [in Polish: The role of landslides in moulding relief of Beskidy Mts. and their foreland]. Przegląd Geograficzny 58(1-2):119–129Google Scholar
  55. 55.
    Kukulak J (2002) Sedimentary record of early wood burning in alluvia of mountain streams in the Bieszczady range, Polish Carpathians. Palaeogeogr Palaeoclimatol Paleoecol 164:167–175CrossRefGoogle Scholar
  56. 56.
    Kukulak J (2004) Zapis skutków osadnictwa i gospodarki rolnej w osadach rzeki górskiej na przykładzie aluwiów dorzecza górnego Sanu w Bieszczadach Wysokich [in Polish: Record of colonisation and agriculture in deposits of a mountain river, an example of upper San basin in Bieszczady Wysokie Mts.]. Pedagogical University, Kraków, pp 1–127Google Scholar
  57. 57.
    Lague D, Crave A, Davy P (2003) Laboratory experiments simulating the geomorphic response to tectonic uplift. J Geophys Res 108:115–134Google Scholar
  58. 58.
    Latocha A (2007) Przemiany Środowiska Przyrodniczego W Sudetach Wschodnich W Warunkach Antropopresji [in Polisch: changes of environment in the Eastern Sudetes due to human impact]. University of Wrocław, Wrocław, pp 1–215Google Scholar
  59. 59.
    Latocha A (2009) Land-use changes and longer-term human-environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology 108:48–57CrossRefGoogle Scholar
  60. 60.
    Lévy S, Jaboyedoff M, Locat J, Demers D (2012) Erosion and channel change as factors of landslides and valley formation in Champlain Sea Clays: The Chacoura River, Quebec, Canada. Geomorphology 145–146:12–18CrossRefGoogle Scholar
  61. 61.
    Lin G-W, Chen H, Hovius N, Horng M-J, Dadson S, Meunier P, Lines M (2008) Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surf Proc Land 33:1354–1373CrossRefGoogle Scholar
  62. 62.
    Malik I (2008) Dendrochronologiczny zapis współczesnych procesów rzeźbotwórczych kształtujących stoki i doliny rzeczne wybranych stref krajobrazowych Europy Środkowej [in Polish: Dendrochronological record of contemporary geomorphic processes shaping relief of slopes and river valleys of selected landscape zones of Central Europe]. University of Silesia, KatowiceGoogle Scholar
  63. 63.
    Margielewski W (1991) Landslide forms on Połoma Mountain in the Sine Wiry Nature Reserve, West Bieszczady. Ochrona Przyrody 49:23–29Google Scholar
  64. 64.
    Meyer NK, Blöthe JH, Brennecke M, Bell R, Hoffmann T (2009) Basin-scale analysis of hillslope-channel coupling in a cuesta landscape (Swabian Alb, SW-Germany). Geophysical Research Abstracts 11, EGU General Assembly 2009, Vienna. http://meetingorganizer.copernicus.org/EGU2009/EGU2009-6276.pdf
  65. 65.
    Migoń P (2006) Geomorfologia [in Polish: Geomorphology]. PWN, WarszawaGoogle Scholar
  66. 66.
    Migoń P (2008) Współczesna ewolucja rzeźby Sudetów i ich Przedgórza [in Polish: Contemporary evolution of relief in Sudety Mts. and their foreland]. In: Starkel L, Kostrzewski A, Kotarba A, Krzemień K (eds) Współczesne Przemiany rzeźby Polski. Association of Polish Geomorphologists, Jagiellonian University, Polish Acadademy of Sciences, Kraków, pp 135–161Google Scholar
  67. 67.
    Migoń P, Kasprzak M (2011) Using LiDar to detect landslide remnants under forest: a study from southwestern Poland. Abstract volume, IAG/AIG regional conference 2011. Geomorphology for human adaptation in changing tropical environments, Addis Ababa, Ethiopia, pp 98–98Google Scholar
  68. 68.
    Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P, Šilhán K (2010) Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124:200–214CrossRefGoogle Scholar
  69. 69.
    Mrozek T, Rączkowski W, Limanówka D (2000) Recent landslides and triggering climatic conditions in Laskowa and Pleśna Region. Studia Geomorphologica Carpatho-Balcanica 34:89–112Google Scholar
  70. 70.
    Nowalnicki T (1971) Beskidzkie jeziorka zaporowe [in Polish: Landslide-dammed lakes of the Beskidy Mts.]. Wierchy 40:274–280Google Scholar
  71. 71.
    Nowalnicki T (1976) Jeziorka osuwiskowe w Beskidzie Sądeckim [in Polish: Landslide-connected lakes in Beskid Sądecki Mts.]. Wierchy 45:182–198Google Scholar
  72. 72.
    Oberc J (1957) Rejon Gór Bardzkich [in Polish: Region of Bardzkie Mts.]. Wydawnictwa Geologiczne, WarszawaGoogle Scholar
  73. 73.
    Ouimet WB, Whipple KX, Crosby BT, Johnson JP, Schildgen TF (2008) Epigenetic gorges in fluvial landscapes. Earth Surf Proc Land 33:1993–2009CrossRefGoogle Scholar
  74. 74.
    Owczarek P (2007) Transformacja Koryt Rzecznych W Warunkach Dostawy Grubofrakcyjnego Materiału Stokowego (Na Przykładzie Średniogórskich Dopływów Odry I Wisły) [in Polish: River channel transformation in conditions of the delivery of coarse-grained slope material (an example of mid-mountain tributaries of Oder and Vistula)]. University of Silesia, KatowiceGoogle Scholar
  75. 75.
    Parzóch K, Migoń P, Szymanowski R, Gąsiorek M (2007) Spływy gruzowe w północnej części Karkonoszy [in Polish: Debris flows in norther part of Karkonosze Mts.]. Opera Corcontica 44(1):81–88Google Scholar
  76. 76.
    Pánek T, Hradecký J, Minár J, Hungr O, Dušek R (2009) Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysh: Ropice Mountain, Czech Republic. Geomorphology 103:414–429CrossRefGoogle Scholar
  77. 77.
    Pánek T, Hradecký J, Šilhán K (2009) Geomorphic evidence of ancient catastrophic flow type landslides in the mid-mountain ridges of the Western Flysch Carpathian Mountains (Czech Republic). Int J Sedim Res 24:88–98CrossRefGoogle Scholar
  78. 78.
    Pánek T, Smolková V, Hradecký J, Kirchner K (2007) Landslide dams in the northern part of Czech Flysch Carpathians: geomorphic evidences and imprints. Studia Geomorphologica Carpatho-Balcanica 41:77–96Google Scholar
  79. 79.
    Penck W (1973) Morphological analysis of land forms: a contribution to physical geology. Collier Macmillan Publishers, London (Translated from German by Czech H and Boswell KC)Google Scholar
  80. 80.
    Remisz J, Bijak S, Parzóch K, Witek M (2012) Could we expect it?—Średniak landslide case study. In: TRACE Tree rings in archaeology, climatology and ecology. Program and abstracts of the dendrosymposium 2012. Association for Tree-Ring Research, Potsdam, pp 114–114Google Scholar
  81. 81.
    Roering JJ, Kirchner JW, Dietrich WE (1999) Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resour Res 35:853–870CrossRefGoogle Scholar
  82. 82.
    Schlunegger F, Detzner K, Olsson D (2002) The evolution towards steady state erosion in a soil-mantled drainage basin: semi-quantitative data from a transient landscape in the Swiss Alps. Geomorphology 43:55–76CrossRefGoogle Scholar
  83. 83.
    Schneider JF, Gruber FE, Mergili M (2013) Recent cases and geomorphic evidence of landslide-dammed lakes and related hazards in the mountains of Central Asia. In: Margottini C (ed) Landslide science and practice 6. Springer, Berlin, Heidelberg, pp 57–64Google Scholar
  84. 84.
    Selby MJ (1974) Dominant geomorphic events in landform evolution. Bull Int Assoc Eng Geol 9:85–89CrossRefGoogle Scholar
  85. 85.
    Skempton AW (1953) Soil mechanics in relation to geology. Proc Yorkshire Geol Soc 29(1, 3):33–62Google Scholar
  86. 86.
    Starkel L (1960) Rozwój rzeźby Karpat fliszowych w holocenie [in Polish: The evolution of relief of the Flysch Carpathians over the Holocene]. Prace Geograficzne 22. Polish Academy of Sciences, KrakówGoogle Scholar
  87. 87.
    Starkel L (1998) Funkcja powodzi w środowisku przyrodniczym dorzecza górnej Wisły [in Polish: The role of flood in upper Vistula basin in July 1997]. In: Starkel L, Grela J (eds) Powódź w dorzeczu górnej Wisły w lipcu 1997 roku. Polish Academy of Sciences, Kraków, pp 9–20Google Scholar
  88. 88.
    Synowiec G (2003) Formy osuwiskowe w Górach Kamiennych [in Polish: Landslides in Kamienne Mts.]. Przegląd Geologiczny 51:59–65Google Scholar
  89. 89.
    Šilhán K, Pánek T (2010) Dynamics of debris flows in the culmination parts of the Moravskoslezské Beskydy Mts. Studia Geomorphologica Carpatho-Balcanica 44:49–60Google Scholar
  90. 90.
    Šilhán K, Stacke V (2011) Erosion-accumulation processes on an alluvial fan: a case study from the Moravsko-Slezské Beskydy Mts. (Czech Republic) based on dendrogeomorphological methods. Moravian Geogr Rep 19(2):18–29Google Scholar
  91. 91.
    Štěpančíková P, Stemberk J, Vilímek V, Košťák B (2008) Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic). Geomorphology 102:68–80CrossRefGoogle Scholar
  92. 92.
    Tang C, Zhu J, Qi X, Ding J (2011) Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: a case study in the Beichuan area of China. Eng Geol 122:22–33CrossRefGoogle Scholar
  93. 93.
    Walczak W (1972) Sudety i Przedgórze Sudeckie [in Polish: The Sudetes and Sudetic Foreland]. In: Klimaszewski M (ed) Geomorfologia Polski 1. Polska Południowa. Góry i Wyżyny. PWN, Warszawa, pp 167–231Google Scholar
  94. 94.
    Wrońska-Wałach D (2009) Dendrogeomorphological analysis of a headwater area in the Gorce Mountains. Studia Geomorphologica Carpatho-Balcanica 43:97–114Google Scholar
  95. 95.
    Wrońska-Wałach D (2010) Wykształcenie i funkcjonowanie lejów źródłowych w górach średnich (na przykładzie wybranych obszarów Karpat fliszowych) [in Polish: Relief and activity of valley heads in mid-altitude mountains (example of selected areas of the Flysch Carpathians)]. Unpublished PhD thesis, Jagiellonian University, KrakówGoogle Scholar
  96. 96.
    Zielonka T, Dubaj N (2009) A tree-ring reconstruction of geomorphic disturnaces in Cliff forests in the Tatra Mts. Land Anal 11:71–76Google Scholar
  97. 97.
    Ziętara T (1968) Rola gwałtownych ulew i powodzi w modelowaniu rzeźby Beskidów [in Polish: The importance of heavy rainfall events and floods in moulding relief of Beskidy Mts.]. Prace Geograficzne Instytutu Geografii 60. Polish Academy of Sciences, KrakówGoogle Scholar
  98. 98.
    Ziętara T (1999) Wpływ procesów stokowych na procesy fluwialne w czasie gwałtownych ulew i powodzi na przykładzie dorzecza Soły [in Polish: The impact of slope processes on fluvial processes during sudden rainfall events and floods on the example of Soła basin]. In: Chełmicki W, Pocisk-Karteczka J (eds) Interdyscyplinarność w badaniach dorzecza. Jagiellonian University, Kraków, pp 231–243Google Scholar
  99. 99.
    Zuchiewicz W (2010) Neotektonika Karpat Polskich I Zapadliska Przedkarpackiego [in Polish: Neotectonics of the Polish Carpathians and Carpathian Foredeep]. AGH University of Science and Technology, KrakówGoogle Scholar
  100. 100.
    Żurawek R (1999) Zmiany erozyjne w dolinach rzek Sudetów Kłodzkich wywołane powodziami w lipcu 1997 r. oraz w lipcu 1998 r [in Polish: Changes in erosion in river valleys of Sudetes, Kłodzko region caused by floods in July 1997 and July 1998]. Problemy Zagospodarowania Ziem Górskich 45:43–61Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Earth Sciences, Department of Reconstructing Environmental ChangeUniversity of Silesia in KatowiceSosnowiecPoland

Personalised recommendations