Advertisement

Materials and Methods

Chapter
  • 246 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this thesis, I present results of the studies conducted in 2007–2012 in selected small catchments and study sites located in the upper (valley heads), middle and lower (outlet fans) sections of catchments. Due to the diversity of sites studied in each of them, different sets of research methods were used. The methods applied were divided into four groups according to their objectives. Methods used for: relief analysis (geomorphic mapping, morphometric analysis, terrain profiles, analysis of aerial photographs), analysis of bedrock and sediment composition (mapping of surface deposits, lithofacies analysis, analysis of organic carbon content and grain roundness in deposits, electrical resistivity tomography), analysis of past environmental change in catchments (analysis of plant macrofossils from deposits and archival maps), absolute dating and evaluation of relief dynamics (radiocarbon dating, dendrochronological dating of fluvial erosion and landsliding, analysis of precipitation data) were distinguished. The chapter provides detailed information of all methods used in the study.

Keywords

Debris Flow Tree Ring Electrical Resistivity Tomography Valley Floor Electrical Resistivity Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson RS, Betancourt JL, Mead JI, Hevly RH, Adam DP (2000) Middle- and late-Wisconsin paleobotanic and paleoclimatic records from the southern Colorado Plateau, USA. Palaeogeogr Palaeoclimatol Palaeoecol 155:31–57CrossRefGoogle Scholar
  2. 2.
    Baker RG (2000) Holocene environments reconstructed from plant macrofossils in stream deposits from southeastern Nebraska, USA. The Holocene 10:357–365CrossRefGoogle Scholar
  3. 3.
    Baker RG, Bettis EA III, Denniston RF, Gonzalez LA (2001) Plant remains, alluvial chronology, and cave speleothem isotopes indicate abrupt Holocene climatic change at 6 ka in midwestern USA. Global Planet Change 28:285–291CrossRefGoogle Scholar
  4. 4.
    Baker RG, Bettis EA III, Denniston RF, Gonzalez LA, Strickland LE, Krieg JR (2002) Holocene paleoenvironments in southeastern Minnesota – chasing the prairie-forest ecotone. Palaeogeogr Palaeoclimatol Palaeoecol 177:103–122CrossRefGoogle Scholar
  5. 5.
    Braam RR, Weiss EEJ, Burrough PA (1987a) Dendrogeomorphological analysis of mass movement a technical note on the research method. Catena 9:585–589Google Scholar
  6. 6.
    Braam RR, Weiss EEJ, Burrough PA (1987) Spatial and temporal analysis of mass movement using dendrochronology. Catena 9:573–584CrossRefGoogle Scholar
  7. 7.
    Cappers RTJ, Bekker RM, Jans JEA (2006) Digital seed atlas of the Netherlands., Groningen archeological studiesGroningen University Library, GroningenGoogle Scholar
  8. 8.
    Corominas J, Moya J (2010) Contribution of dendrochronology to the determination of magnitude-frequency relationships for landslides. Geomorphology 124:137–149CrossRefGoogle Scholar
  9. 9.
    Dobrzański B (1992) Badanie gleb w laboratorium i w polu: przewodnik do ćwiczeń z gleboznawstwa dla studentów biologii i geografii [in Polish: Analyses of soil in the laboratory and in the fiels: draft of soil science for biology and geography students]. Maria Curie-Skłodowska University, LublinGoogle Scholar
  10. 10.
    Fantucci R, Sorriso-Valvo M (1999) Dendrogeomorphological analysis of a slope near Lago Calabria (Italy). Geomorphology 30:165–174CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Gärtner H (2007) Tree roots—methodological review and new development in dating and quantifying erosive processes. Geomorphology 86:243–251CrossRefGoogle Scholar
  13. 13.
    Gärtner H, Schweingruber FH, Dikau R (2001) Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia 19:81–91Google Scholar
  14. 14.
    Gers E, Florin N, Gärtner H, Glade T, Dikau R, Schweingruber FH (2001) Application of shrubs for dendrogeomorphological analysis to reconstruct spatial and temporal landslide movement patterns. A preliminary study. Zeitschrift für Geomorphologie Supplement band 125, pp 163–175 Google Scholar
  15. 15.
    Gradziński R, Kostecka A, Radomski A, Unrug R (1986) Zarys sedymentologii [in Polish: an outline of sedimentology]. Wydawnictwa Geologiczne, WarszawaGoogle Scholar
  16. 16.
    Hupp CR (1988) Plant ecological aspects of flood geomorphology and paleoflood history. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 335–356Google Scholar
  17. 17.
    Krąpiec M, Margielewski W (2000) Analiza dendrogeomorfologiczna ruchów masowych na obszarze polskich Karpat fliszowych [in Polish: Dendrogeomorphic analysis of mass movements in the Polish Flysch Carpathians]. Kwartalinik AGH Geologia 26(2):141–171Google Scholar
  18. 18.
    Kulpa W (1988) Nasionoznawstwo chwastów [in Polish: seeds of segetal weeds]. Państwowe Wydawnictwa Rolnicze i Leśne, WarszawaGoogle Scholar
  19. 19.
    Lityńska-Zając M, Wasylikowa K (2005) Przewodnik do badań archeobotanicznych [in Polish: a guidebook to archaeobotanical studies]. Vademecum geobotanicumSorus, PoznańGoogle Scholar
  20. 20.
    Malik I (2008) Dendrochronologiczny zapis współczesnych procesów rzeźbotwórczych kształtujących stoki i doliny rzeczne wybranych stref krajobrazowych Europy Środkowej [in Polish: Dendrochronological record of contemporary geomorphic processes shaping relief of slopes and river valleys of selected landscape zones of Central Europe]. University of Silesia, KatowiceGoogle Scholar
  21. 21.
    Malik I, Owczarek P (2009) Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes—Central Europe). Geochronometria 34:57–66CrossRefGoogle Scholar
  22. 22.
    Malik I, Wistuba M (2012) Dendrochronological methods for reconstructing mass movements—an example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3):180–196CrossRefGoogle Scholar
  23. 23.
    Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P, Šilhán K (2010) Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124:200–214CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Pánek T, Hradecký J, Minár J, Hungr O, Dušek R (2009) Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysh: Ropice Mountain, Czech Republic. Geomorphology 103:414–429CrossRefGoogle Scholar
  26. 26.
    Pánek T, Hradecký J, Šilhán K (2008) Application of electrical resistivity tomography (ERT) in the study of various types of slope deformations in anisotropic bedrock: case studies from the Flysch Carpathians. Studia Geomorphologica Carpatho-Balcanica 32:57–73Google Scholar
  27. 27.
    Racinowski R, Szczypek T, Wach J (2001) Prezentacja i interpretacja wyników badań uziarnienia osadów czwartorzędowych [in Polish: presentation and interpretation of the results of grain-size analyses of the quaternary deposits]. University of Silesia, KatowiceGoogle Scholar
  28. 28.
    Schweingruber FH (1996) Tree rings and environment. Dendroecology. Swiss Federal Institute for Forests, Snow and Landscape Research, WSL/FNP Birmensdorf, Paul Haupt Publishers Berne, StuttgartGoogle Scholar
  29. 29.
    Schweingruber FH (2007) Wood structure and environment. Springer, BerlinGoogle Scholar
  30. 30.
    Shroder JF Jr (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research 9:168–185Google Scholar
  31. 31.
    Štekl J, Brázdil R, Kakos V, Jeř J, Tolasz R, Sokol Z (2001) Extrémni denni srážkové únrny ČR w obdobi 1879 – 2000 a jeich synpotické přičiny [in Czech: Extreme daily precipitation events in Czech Republic in 1879-2000 and their synoptic causes]. In: Narodí Kimatický Program ČR, PrahaGoogle Scholar
  32. 32.
    Timell TE (1986) Compression wood in gymnosperms. Springer, New YorkCrossRefGoogle Scholar
  33. 33.
    Tobolski K (2000) Przewodnik do oznaczania torfów i osadów jeziornych [in Polish: a guidebook for analyses of peat and lake deposits]., Vademecum geobotanicumPWN, WarszawaGoogle Scholar
  34. 34.
    Wasylikowa K (1973) Badanie kopalnych szczątków roślin wyższych [in Polish: Analyses of fossil remians of plants]. In: Rühle E (ed) Metodyka badań osadów czwartorzędowych. Wydawnictwa Geologiczne, Warszawa, pp 161–210Google Scholar
  35. 35.
    Wistuba M, Malik I, Gärtner H, Kojs P, Owczarek P (2013) Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst in the Carpathian and Sudeten mountains (Central Europe). Catena 111:41–55CrossRefGoogle Scholar
  36. 36.
    Work PT, Semken HA, Baker RG (2005) Pollen, plant macrofossils and microvertebrates from mid-Holocene alluvium in east-central Iowa, USA: comparative taphonomy and paleoecology. Palaeogeogr Palaeoclimatol Palaeoecol 223:204–221CrossRefGoogle Scholar
  37. 37.
    Zarzycki K, Trzcińska-Tacik H, Różański W, Szeląg Z, Wołek J, Korzeniak U (2002) Ecological indicator values of vascular plants of Poland. In: Szafer W (ed) Biodiversity of Poland. Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  38. 38.
    Zazula GD, Schweger CE, Beaudoin AB, McCourt GH (2006) Macrofossil and pollen evidence for full-glacial steppe within an ecological mosaic along the Bluefish River, eastern Beringia. Quatern Int 142–143:2–19Google Scholar
  39. 39.
    Zieliński T (1995) Kod litofacjalny i litogenetyczny—konstrukcja i zastosowanie [in Polish: lithofacial and lithogenetic code—structure and application]. In: Mycielska-Dowgiałło E, Rutkowski J (eds) Badania osadów czwartorzędowych. Wybrane metody i interpretacja wyników. University of Warsaw, Warszawa, pp 220–235Google Scholar
  40. 40.
    Zielski A, Krąpiec M (2004) Dendrochronologia [in Polish: dendrochronology]. PWN, WarszawaGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Earth Sciences, Department of Reconstructing Environmental ChangeUniversity of Silesia in KatowiceSosnowiecPoland

Personalised recommendations