Skip to main content

Model for the Origin of Acute Leukemias in Children: Interaction of Three Factors—Susceptibility, Exposure, and Window of Vulnerability

  • Chapter
  • First Online:
Book cover Etiology of Acute Leukemias in Children

Abstract

Various theoretical models concerning the origin of leukemias in children, especially acute lymphoblastic leukemia (ALL), attempt to explain why leukemia occurs and how it develops; the proposed model, being relatively simpler, attempts to specify the moment when a child develops acute leukemia. The causes of childhood leukemia have not yet been identified because the theoretical basis of the search has been at fault. The risk factors for acute leukemia (AL) are distinct, depending on the age at onset. It is probable that the older the child, the greater the necessity of risk factors to which the child must be exposed for the disease to develop and the less the susceptibility to AL with which the child was born. For this reason, I venture to say that the age at onset of AL is a reflection of the degree of susceptibility to the disease and of the number of factors of exposure to carcinogens that are necessary for the development of the disease. This conjecture also depends on the window of vulnerability in which the child is situated. This window of vulnerability is directly involved with the proliferation of the child’s B or T cells, which cause the interaction between the degree of susceptibility and the degree of exposure to carcinogens, thereby provoking the onset of AL.

This study was funded by grants FIS/IMSS/PROT/G12/1134, FIS/IMSS/PROT/PRIO/11/017, and FIS/IMSS/PROT/PRIO/14/031 from Instituto Mexicano del Seguro Social and PDCPN2013-01/215726 from the Consejo Nacional de Ciencia y Técnología de México. The authors thank Veronica Yakoleff for translating the original Spanish manuscript and for helpful comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson LM, et al. Critical windows of exposure for children’s health: cancer in human epidemiological studies and neoplasms in experimental animal models. Environ Health Perspect. 2000;108 suppl 3:573–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassin EB, et al. Age-specific fluoride exposure in drinking water and osteosarcoma (United States). Cancer Causes Control. 2006;17:421–8.

    Article  PubMed  Google Scholar 

  • Bhojwani D, et al. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin N Am. 2015;62:47–60.

    Article  Google Scholar 

  • Bueno, et al. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification. Cell Res. 2012;22:986–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JS. Parental smoking and childhood leukemia. In: Verma M, editor. Methods of molecular biology, cancer epidemiology, vol. 472. Totowa: Springer Science; 2009. p. 103–37.

    Chapter  Google Scholar 

  • Chang JS, et al. Allergies and childhood leukemia. Blood Cell Mol Dis. 2009;42:99–104.

    Article  CAS  Google Scholar 

  • Dorak MT, et al. Unravelling an HLA-DR association in childhood acute lymphoblastic leukemia. Blood. 1999;94:694–700.

    CAS  PubMed  Google Scholar 

  • Flores-Lujano J, et al. Breastfeeding and early infection in the aetiology of childhood leukaemia in Down syndrome. Br J Cancer. 2009;101:860–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves M. Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer. 1999;35(14):1941–53.

    Article  CAS  PubMed  Google Scholar 

  • Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006a;6(3):193–203.

    Article  CAS  PubMed  Google Scholar 

  • Greaves M. The causation of childhood leukemia: a paradox of progress? Discov Med. 2006b;6(31):24–8.

    PubMed  Google Scholar 

  • Greaves M. Is cancer an evolutionary inevitability? In: Cancer. The evolutionary legacy. Oxford University Press. New York: 2000a. p. 111–9.

    Google Scholar 

  • Greaves M. How cáncer cells play the winning game. In: Cancer. The evolutionary legacy. Oxford University Press. New York: 2000b. p. 53–68.

    Google Scholar 

  • Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3(9):639–49.

    Article  CAS  PubMed  Google Scholar 

  • Greim H, et al. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann NY Acad Sci. 2014;1310:7–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha N, et al. NQO1 polymorphisms and de novo childhood leukemia: a HuGE review and meta-analysis. Am J Epidemiol. 2008;168:1221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henderson E. History of leukemia. In: Henderson ES, Lister TA, Greaves MF, editors. Leukemia. 7th ed. Philadelphia: Saunders; 2002. p. 1–7.

    Google Scholar 

  • Hitzler JK. Cancer among persons with Down syndrome. Int Rev Res Ment Retard. 2010;39:129–64.

    Google Scholar 

  • Inaba, et al. Acute lymphoblastic leukaemia. Lancet. 2013;381:1943–55.

    Article  PubMed  Google Scholar 

  • Kansara M, et al. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35.

    Article  CAS  PubMed  Google Scholar 

  • Kheifets L, et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer. 2010;103:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKenzie J, et al. The putative role of transforming viruses in childhood acute lymphoblastic leukemia. Haematologica. 2006;91:240–3.

    CAS  PubMed  Google Scholar 

  • Maloney KW, Taub JW, Ravindranath Y, Roberts I, Vyas P. Down syndrome preleukemia and leukemia. Pediatr Clin N Am. 2015;62:121–37.

    Article  Google Scholar 

  • Marshall GM, et al. The prenatal origins of cancer. Nat Rev Cancer. 2014;14:277–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally RJQ, Eden TOB. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol. 2004;127:243–63.

    Article  PubMed  Google Scholar 

  • Mejía-Aranguré JM. Model for identifying the etiology of acute lymphoblastic leukemia in children. In Mejia-Arangure JM, editor. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. Croatia. InTech; 2013. p. 342.

    Google Scholar 

  • Mejía-Aranguré JM, Fajardo-Gutierrez A. Selection by susceptibility as a design to identify environmental risk factors in children’s acute leukemia. Epidemiology. 2006;17:S505–6.

    Article  Google Scholar 

  • Mejía-Aranguré JM, et al. Environmental factors contributing to the development of childhood leukemia in children with Down’s syndrome. Leukemia. 2003;17:1905–7.

    Article  PubMed  Google Scholar 

  • Mejía-Aranguré JM, et al. Age of onset of different malignant tumors in childhood. Rev Med Inst Mex Seguro Soc. 2005;43(1):25–37.

    PubMed  Google Scholar 

  • Mejía-Aranguré JM, et al. Magnetic fields and acute leukemia in children with Down syndrome. Epidemiology. 2007;18(1):158–61.

    Article  PubMed  Google Scholar 

  • Mejía-Aranguré JM, et al. Childhood acute leukemias in Hispanic population: differences by age peak and Immunophenotype. In: Faderl S, editor. Novel aspects in acute lymphoblastic leukemia. Croatia: InTech; 2011a.

    Google Scholar 

  • Mejía-Aranguré JM, et al. Infections and acute leukemia in children with Down syndrome. In: Dey S, editor. Prenatal diagnosis and screening for Down syndrome. Croatia: Intech; 2011b. p. 79–106. doi:10.5772/18533.

    Google Scholar 

  • Metayer C, et al. The childhood leukemia international consortium. Cancer Epidemiol. 2013;37:336–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales-Sánchez A, Fuentes-Pananá E. In Mejía-Aranguré JM, editor. Clinical epidemiology of acute lymphoblastic leukemia – from the molecules to the clinic. Croatia. InTech; 2013. p. 19.

    Google Scholar 

  • Muñoz P, et al. Specific marking of hESCs-derived hematopoietic lineage by WAS-promoter driven lentiviral vectors. PLoS ONE. 2012;7(6), e39091. doi:10.1371/journal.pone.0039091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuñez-Enriquez JC, et al. Allergy and acute leukaemia in children with Down syndrome: a population study. Report from the Mexican inter-institutional group for the identification of the causes of childhood leukaemia. Br J Cancer. 2013;108:2334–8. doi:10.1038/bjc.2013.237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkin DM, Darby SC. Cancers in 2010 attributable to ionising radiation exposure in the UK. Br J Cancer. 2011;105:S57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pendleton MJ, et al. Topoisomerase II and leukemia. Ann NY Acad Sci. 2014;1310:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera FP. Molecular epidemiology: on the path to prevention? J Natl Cancer Inst. 2000;92:602–12.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Saldivar ML, et al. Father’s occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case-control study). BMC Cancer. 2008;8:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prendergast AM, Essers MAG. Hematopoietic stem cells, infection, and the niche. Ann NY Acad Sci. 2014;1310:51–7.

    Article  CAS  PubMed  Google Scholar 

  • Pyatt D, Hays S. A review of the potential association between childhood leukemia and benzene. Chem Biol Interact. 2010;184:151–64.

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Mejía V, et al. iPSC lines that do not silence the expression of the ectopic reprogramming factors may display enhanced propensity to genomic instability. Cell Res. 2010;20:1092–5.

    Article  PubMed  Google Scholar 

  • Ramos-Mejía V, et al. iPSCs from cancer cells: challenges and opportunities. Trends Mol Med. 2012;18(5):245–7.

    Article  PubMed  Google Scholar 

  • Richardson RB. Promotional etiology for common childhood acute lymphoblastic leukemia: the infective lymphoid recovery hypothesis. Leuk Res. 2011;35(11):1425–31.

    Article  PubMed  Google Scholar 

  • Riether C, et al. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 2015;22:187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman KJ. Causes. Am J Epidemiol. 1976;104(6):587–92.

    CAS  PubMed  Google Scholar 

  • Rudant J, et al. Selection bias in case–control studies on household exposure to pesticides and childhood acute leukemia. J Expo Sci Environ Epidemiol. 2010;20:299–309.

    Article  CAS  PubMed  Google Scholar 

  • Schmiegelow K, Vestergaard T, Nielsen SM, Hjalgrim H. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis. Leukemia. 2008;22(12):2137–41.

    Article  CAS  PubMed  Google Scholar 

  • Schüz J, et al. Bias in studies of parental self-reported occupational exposure and childhood cancer. Am J Epidemiol. 2003;158:710–6.

    Article  PubMed  Google Scholar 

  • Seif AE. Pediatric leukemia predisposition syndromes: clues to understanding leukemogenesis. Cancer Genet. 2011;204:227e244.

    Article  Google Scholar 

  • Taylor GM. Immunogenetics and the aetiology of childhood leukemia. Arch Dis Child. 1994;70(2):77–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uckun FM. Re:MLL-AF4 fusion transcripts in normal and leukemic hematopoietic cells. Blood. 1999;93:1107–10.

    Google Scholar 

  • Uckun FM, et al. Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood. 1998;92:810–21.

    CAS  PubMed  Google Scholar 

  • Valladares A, et al. Cytogenetic studies in children with Down syndrome and acute leukemia. Leuk Res. 2005;29:1241–6.

    Article  CAS  PubMed  Google Scholar 

  • Vineis P, Perera F. Molecular epidemiology and biomarkers in etiologic cancer research: the new in light of the old. Cancer Epidemiol Biomarkers Prev. 2007;16:1954–65.

    Article  CAS  PubMed  Google Scholar 

  • Wartenberg D, Groves FD, Adelman AS. Acute lymphoblastic leukemia: epidemiology and etiology. In: Estey EH, Faderl SH, Kantarjian HM, editors. Hematologic malignancies: acute leukemias. Germany: Springer; 2008. p. 77–93.

    Google Scholar 

  • Wiemels J. Perspectives on the causes of childhood leukemia. Chem Biol Interact. 2012;196:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Yeoh EJ, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133–43.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, et al. Disordered epigenetic regulation in MLL-related leukemia. Int J Hematol. 2012;96:428–37.

    Article  CAS  PubMed  Google Scholar 

  • Zur Hausen H, de Villiers EM. Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer. 2005;115:1–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks Veronica Yakoleff for the English translation of the manuscript and for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Mejía-Aranguré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mejía-Aranguré, J.M. (2016). Model for the Origin of Acute Leukemias in Children: Interaction of Three Factors—Susceptibility, Exposure, and Window of Vulnerability. In: Mejía-Aranguré, J. (eds) Etiology of Acute Leukemias in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-05798-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05798-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05797-2

  • Online ISBN: 978-3-319-05798-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics