Skip to main content

Introduction: Childhood Leukemia

  • Chapter
  • First Online:
Etiology of Acute Leukemias in Children

Abstract

Childhood leukemia is universal, with the same molecular mechanisms at play in children of different genetic and environmental backgrounds. Leukemia is regional as well, and the factors that influence its occurrence and outcome can be affected by ethnic, environmental, geographic, and social circumstances. Childhood leukemia is also unique for every person, such that two individuals with apparently the same disease can respond in a different way to the same treatment and exhibit a different toxicity pattern.

As an introduction to this book, this chapter contains an overview of childhood acute leukemias, covering the relevant aspects of the two main subtypes that occur in pediatric patients, with the aim of providing a basis for the understanding of this heterogeneous group of malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

General Issues and Classification of Leukemia

  • Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9:1783–6.

    CAS  PubMed  Google Scholar 

  • Bennet JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103:620–5.

    Article  Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias (FAB cooperative group). Br J Haematol. 1976;33:451–8.

    Article  CAS  PubMed  Google Scholar 

  • Buffler PA, Kwan ML, Reynolds P, Urayama KY. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Invest. 2005;23:60–75.

    Article  CAS  PubMed  Google Scholar 

  • Gloeckler L, Percy C, Bunin GR. Introduction. In: Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Bethesda: Surveillance Epidemiology and End Results. US Department of Health & Human Services. NIH Publication (99–4649). 1999. p. 1–16.

    Google Scholar 

  • Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–92.

    CAS  PubMed  Google Scholar 

  • Swerdlow SH, Campo E, Harris NL, et al., editors. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008.

    Google Scholar 

  • Vardiman JW, Thiele J, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rational and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

Acute Lymphoblastic Leukemia

  • Advani S, Pai S, Venzon D, et al. Acute lymphoblastic leukemia in India: An analysis of prognostic factors using a single treatment regimen. Ann Oncol. 1999;10:167–76.

    Article  CAS  PubMed  Google Scholar 

  • Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol. 2008;8:380–90.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30:41–7.

    Article  CAS  PubMed  Google Scholar 

  • Arya LS, Padmanjali KS, Sazawal S, et al. Childhood T-lineage acute lymphoblastic leukemia: management and outcome at a tertiary care center in North India. Indian Pediatr. 2011;48:785–90.

    Article  CAS  PubMed  Google Scholar 

  • Asim M, Zaidi A, Ghafoor T, Qureshi Y. Death analysis of childhood acute lymphoblastic leukaemia; experience at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Pakistan. J Pak Med Assoc. 2011;61:666–70.

    PubMed  Google Scholar 

  • Avramis VI, Sencer S, Periclou AP, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2002;99:1986–94.

    Article  CAS  PubMed  Google Scholar 

  • Babatunde A, Amiwero C, Olatunji P and Durotoye I. Pattern of haematological malignancies in Ilorin, Nigeria: a ten year review. Int J Hematol 2008;5(2), p 1–7. https://ispub.com/IJHE/5/2/13470.

  • Bachir F, Bennani S, Lahjouji A, et al. Characterization of acute lymphoblastic leukemia subtypes in Moroccan children. Int J Pediatr. 2009;2009, 674801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bain BJ, Barnett D, Linch D, et al. Revised guideline on immunophenotyping in acute leukaemias and chronic lymphoproliferative disorders. Clin Lab Haematol. 2002;24:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Bajel A, George B, Mathews V, et al. Treatment of children with acute lymphoblastic leukemia in India using a BFM protocol. Pediatr Blood Cancer. 2008;51:621–5.

    Article  PubMed  Google Scholar 

  • Bene MC, Nebe T, Bettelheim P, Buldini B, Bumbea H, Kern W, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia. 2011;25:567–74.

    Article  CAS  PubMed  Google Scholar 

  • Bercovich D, Ganmore I, Scott LM, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372:1484–92.

    Article  CAS  PubMed  Google Scholar 

  • Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001;15:1495–504.

    Article  CAS  PubMed  Google Scholar 

  • Bhargava M, Kumar R, Karak A, et al. Immunological subtypes of acute lymphoblastic leukemia in North India. Leuk Res. 1988;12:673–8.

    Article  CAS  PubMed  Google Scholar 

  • Bhojwani D, Howard SC, Pui CH. High-risk childhood acute lymphoblastic leukemia. Clin Lymphoma Myeloma. 2009;9 Suppl 3:S222–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonilla M, Moreno N, Marina N, et al. Acute lymphoblastic leukemia in a developing country: preliminary results of a nonrandomized clinical trial in El Salvador. J Pediatr Hematol Oncol. 2000;22:495–501.

    Article  CAS  PubMed  Google Scholar 

  • Borowitz MJ, Hunger SP, Carroll AJ, et al. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood. 1993;82:1086–91.

    CAS  PubMed  Google Scholar 

  • Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111:5477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostrom BC, Sensel MR, Sather HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2003;101:3809–17.

    Article  CAS  PubMed  Google Scholar 

  • Bruggemann M, Gokbuget N, Kneba M. Acute lymphoblastic leukemia: monitoring minimal residual disease as a therapeutic principle. Semin Oncol. 2012;39:47–57.

    Google Scholar 

  • Bürger B, Zimmermann M, Mann G, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blast or traumatic lumbar puncture. J Clin Oncol. 2003;21:184–8.

    Article  PubMed  Google Scholar 

  • Burke MJ, Bhatla T. Epigenetic modifications in pediatric acute lymphoblastic leukemia. Front Pediatr. 2014;2:42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cario G, Zimmermann M, Romey R, et al. Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood. 2010;115:5393–7.

    Article  CAS  PubMed  Google Scholar 

  • Carroll AJ, Crist WM, Link MP, et al. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1990;76:1220–4.

    CAS  PubMed  Google Scholar 

  • Chauvenet AR, Martin PL, Devidas M, et al. Anti–metabolite therapy for lesser risk B-lineage acute lymphoblastic leukemia of childhood: a report from Children’s Oncology Group Study P9201. Blood. 2007;110:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Cheng JT, Tasi LH, et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J. 1990;9:415–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CL, Liu Q, Pui CH, et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood. 1997;89:1701–7.

    Google Scholar 

  • Chen IM, Harvey RC, Mullighan CG, et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: A Children’s Oncology Group Study. Blood. 2012;119:3512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childhood Acute Lymphoblastic Leukaemia Collaborative Group (CALLCG). Beneficial and harmful effects of anthracyclines in the treatment of childhood acute lymphoblastic leukaemia: a systematic review and meta-analysis. Br J Haematol. 2009;145:376–88.

    Article  CAS  Google Scholar 

  • Childhood ALL Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: overview of 42 trials involving 12,000 randomized children. Lancet. 1996;347:1783–8.

    Article  Google Scholar 

  • Conter V, Bartram CR, Valsecchi MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14.

    Article  CAS  PubMed  Google Scholar 

  • Coustan-Smith E, Ribeiro RC, Rubnitz JE, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol. 2003;123:243–52.

    Article  PubMed  Google Scholar 

  • Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Braekeleer E, Meyer C, Douet-Guilbert N, et al. Complex and cryptic chromosomal rearrangements involving the MLL gene in acute leukemia: A study of 7 patients and review of the literature. Blood Cells Mol Dis. 2010;44:268–74.

    Article  PubMed  CAS  Google Scholar 

  • Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–34.

    Article  CAS  Google Scholar 

  • Diakos C, Xiao Y, Zheng S, et al. Direct and indirect targets of the E2A-PBX1 leukemia- specific fusion protein. PLoS. 2014;9, e87602.

    Article  CAS  Google Scholar 

  • Dijon M, Bardin F, Murati A, et al. The role of Ikaros in human erythroid differentiation. Blood. 2008;111:1138–46.

    Article  CAS  PubMed  Google Scholar 

  • Dördelmann M, Reiter A, Borkhardt A, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood. 1999;94:1209–17.

    PubMed  Google Scholar 

  • Dörge P, Meissner B, Zimmermann M, et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica. 2013;98:428–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumortier A, Kirstetter P, Kastner P, Chan S. Ikaros regulates neutrophil differentiation. Blood. 2003;101:2219–26.

    Article  CAS  PubMed  Google Scholar 

  • Eckert C, Henze G, Seeger K, et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol. 2013;31:2736–42.

    Article  PubMed  Google Scholar 

  • Enciso-Mora V, Hosking FJ, Sheridan E, et al. Common genetic variation contributes significantly to the risk of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia. 2012;26:2212–5.

    Article  CAS  PubMed  Google Scholar 

  • Ensor HM, Schwab C, Russell LJ, et al. Demographic, clinical and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: Results from the MRC ALL97 clinical trial. Blood. 2010;117:2129–36.

    Article  PubMed  CAS  Google Scholar 

  • Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature. 2004;429:464–8.

    Article  CAS  PubMed  Google Scholar 

  • Farmer P, Frenk J, Knaul FM, et al. Expansion of cancer care and control in countries of low and middle income: A call to action. Lancet. 2010;376:1186–93.

    Article  PubMed  Google Scholar 

  • Forestier E, Johansson B, Borgström G, et al. Cytogenetic findings in a population-based series of 787 childhood acute lymphoblastic leukemias from the Nordic countries. The NOPHO Leukemia Cytogenetic Study Group. Eur J Haematol. 2000;64:194–200.

    Article  CAS  PubMed  Google Scholar 

  • Forestier E, Heyman M, Andersen MK, et al. Outcome of ETV6L-RUNX1 –positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol. 2008;140:665–72.

    Article  PubMed  Google Scholar 

  • Fronkova E, Mejstrikova E, Avigad S, et al. Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 protocol for childhood ALL: is it possible to avoid MRD testing? Leukemia. 2008;22:989–97.

    Article  CAS  PubMed  Google Scholar 

  • Gadner H, Masera G, Schrappe M, et al. The eighth international childhood acute lymphoblastic leukemia workshop (‘Ponte di legno meeting’) report: Vienna, Austria, April 27–28, 2005. Leukemia. 2006;20:9–17.

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Santizo VG, Müllers P, et al. Frequency of thiopurine S-methyltransferase mutant alleles in indigenous and admixed Guatemalan patients with acute lymphoblastic leukemia. Med Oncol. 2013;30:474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaynon PS, Angiolillo AL, Carroll WL, et al. Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group Report. Leukemia. 2010;24:285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgopoulos K. Acute lymphoblastic leukemia-on the wings of IKAROS. N Engl J Med. 2009;360:524–6.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH, et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell. 1994;79:143–56.

    Article  CAS  PubMed  Google Scholar 

  • Goggins WB, Fiona FKL. Racial and ethnic disparities in survival of US children with acute lymphoblastic leukemia: evidence from the SEER database 1988–2008. Cancer Causes Control. 2012;23:737–43.

    Article  PubMed  Google Scholar 

  • Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1995;92:4917–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3:639–49.

    Article  CAS  PubMed  Google Scholar 

  • Greaves MF, Colman SM, Beard ME, et al. Geographical distribution of acute lymphoblastic leukaemia subtypes: second report of the collaborative group study. Leukemia. 1993;7:27–34.

    CAS  PubMed  Google Scholar 

  • Gupta S, Antillon FA, Bonilla M, et al. Treatment-related mortality in children with acute lymphoblastic leukemia in Central America. Cancer. 2011;117:4788–95.

    Article  PubMed  Google Scholar 

  • Gupta S, Wilejto M, Pole JD, et al. Low socioeconomic status is associated with worse survival in children with cancer: a systematic review. PLoS One. 2014;9, e89482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurney JG, Severson RK, Davis S, Robison LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995;75:2186–219.

    Google Scholar 

  • Gustafsson G, Schmiegelow K, Forestier E, et al. Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of central nervous system irradiation. Nordic Society of Pediatric Haematology and Oncology (NOPHO). Leukemia. 2000;14:2267–75.

    Article  CAS  PubMed  Google Scholar 

  • Harrison CJ, Moorman AV, Barber KE, et al. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol. 2005;129:520–30.

    Article  PubMed  Google Scholar 

  • Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115:5312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerema NA, Nachman JB, Sather HN, et al. Hypodyploid with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report of the children’s cancer group. Blood. 1999;94:4036–45.

    CAS  PubMed  Google Scholar 

  • Heerema NA, Sather HN, Sensel MG, et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol. 2000;18:1876–87.

    CAS  PubMed  Google Scholar 

  • Heerema NA, Raimondi SC, Anderson JR, et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2007;46:684–93.

    Article  CAS  PubMed  Google Scholar 

  • Hijiya N, Liu W, Sandlund JT, et al. Overt testicular disease at diagnosis of childhood acute lymphoblastic leukemia: lack of therapeutic role of local irradiation. Leukemia. 2005;19:1399–403.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MJ, Xie L, McCahan SM. Characterization of pediatric acute lymphoblastic leukemia survival patterns by age at diagnosis. J Cancer Epidemiol. 2014;2014, 865979.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard SC, Metzger ML, Wilimas JA, et al. Childhood cancer epidemiology in low-income countries. Cancer. 2008;112:461–72.

    Article  PubMed  Google Scholar 

  • Hunger SP, Sung L, Howard SC. Treatment strategies and regimens of graduated intensity for childhood acute lymphoblastic leukemia in low-income countries: a proposal. Pediatr Blood Cancer. 2009;52:559–65.

    Article  PubMed  Google Scholar 

  • Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30:1663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Igarashi S, Manabe A, Ohara A, et al. No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children’s Cancer Study Group L95-14 protocol. J Clin Oncol. 2005;23:6489–98.

    Article  CAS  PubMed  Google Scholar 

  • Kadan-Lottick NS, Ness KK, Bhatia S, Gurney JG. Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. JAMA. 2003;290:2008–14.

    Article  CAS  PubMed  Google Scholar 

  • Kamat DM, Gopal R, Advani SH, et al. Pattern of subtypes of acute lymphoblastic leukemia in India. Leuk Res. 1985;9:927–34.

    Article  CAS  PubMed  Google Scholar 

  • Kamel AM, Ghaleb FM, Assem MM, et al. Phenotypic analysis of T-cell acute lymphoblastic leukemia in Egypt. Leuk Res. 1990;14:602–9.

    Article  Google Scholar 

  • Kamps WA, Bökkerink JPM, Hakvoort-Cammel FGAJ, Veerman AJP, et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991–1996). Leukemia. 2002;16:1099–111.

    Article  CAS  PubMed  Google Scholar 

  • Kanerva J, Saarinen-Pihkala UM, Nini T, et al. Favorable outcome in 20-year follow-up of children with very-low-risk ALL and minimal standard therapy, with special reference to TEL-AML1 fusion. Pediatr Blood Cancer. 2004;42:30–5.

    Article  PubMed  Google Scholar 

  • Kang H, Wilson CS, Harvey RC, et al. Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119:1872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MJ, Trikalinos TA, Dahabreh IJ, et al. Cranial radiation for pediatric T-lineage acute lymphoblastic leukemia: a systematic review and meta-analysis. Am J Hematol. 2014a;89:992–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109:4151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroll ME, Stiller CA, Richards S, et al. Evidence for under-diagnosis of childhood acute lymphoblastic leukaemia in poorer communities within Great Britain. Br J Cancer. 2012;106:1556–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper RP, Waanders E, van der Velden VH, et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia. 2010;24:1258–64.

    Article  CAS  PubMed  Google Scholar 

  • Larson Gedman A, Chen Q, Kugel Desmoulin S, et al. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia. 2009;23:1417–25.

    Article  CAS  PubMed  Google Scholar 

  • Levin SD, Koelling RM, Friend SL, et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J Immunol. 1999;162:677–83.

    CAS  PubMed  Google Scholar 

  • Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer. 2008;112:416–32.

    Article  PubMed  Google Scholar 

  • Lobato-Mendizábal E, López-Martínez B, Ruiz-Argüelles GJ. A critical review of the prognostic value of the nutritional status at diagnosis in the outcome of therapy of children with acute lymphoblastic leukemia. Rev Invest Clin. 2003;55:31–5.

    PubMed  Google Scholar 

  • Macharia WM. Comparison of prognostic determinants in childhood acute lymphoblastic leukemia in negroid and Caucasian populations. East Afr Med J. 1996;73:638–42.

    CAS  PubMed  Google Scholar 

  • Magrath I, Shanta V, Advani S, et al. Treatment of acute lymphoblastic leukaemia in countries with limited resources; lessons from use of a single protocol in India over a twenty year period [corrected]. Eur J Cancer. 2005;41:1570–83.

    Article  CAS  PubMed  Google Scholar 

  • Malinge S, Ben-Abdelali R, Settegrana C, et al. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood. 2007;109:2202–4.

    Article  CAS  PubMed  Google Scholar 

  • Maloney KW, Carroll WL, Carroll AJ, et al. Down syndrome childhood acute lymphoblastic leukemia has a unique spectrum of sentinel cytogenetic lesions that influences treatment outcome: a report from the Children’s Oncology Group. Blood. 2010;116:1045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matasar MJ, Ritchie EK, Consedine N. Incidence rates of the major leukemia subtypes among US Hispanics, Blacks, and non-Hispanic Whites. Leuk Lymphoma. 2006;47:2365–70.

    Article  PubMed  Google Scholar 

  • Mc Nally RJ, Birch JM, Taylor GM, Eden OB. Incidence of childhood precursor B-cell acute lymphoblastic leukaemia in north-west England. Lancet. 2000;356:485–6.

    Article  CAS  Google Scholar 

  • Mejia-Arangure JM, Fajardo-Gutierrez A, Reyes-Ruiz NI, et al. Malnutrition in childhood lymphoblastic leukemia: a predictor of early mortality during the induction-to-remission phase of the treatment. Arch Med Res. 1999;30:150–3.

    Article  CAS  PubMed  Google Scholar 

  • Metzger ML, Howard SC, Fu LC, et al. Outcome of childhood acute lymphoblastic leukaemia in resource-poor countries. Lancet. 2003;362:706–8.

    Article  PubMed  Google Scholar 

  • Mi JQ, Wang X, Yao Y, et al. Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 patients. Leukemia. 2012;26:1507–16.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CD, Richards SM, Kinsey SE, Medical Research Council Childhood Leukaemia Working Party, et al. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK medical research council ALL97 randomised trial. Br J Haematol. 2005;129:734–45.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell C, Richards S, Harrison CJ, Eden T. Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–2001. Leukemia. 2010;24:406–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moorman AV, Richards SM, Martineau M, et al. United Kingdom Medical Research Council’s Childhood Leukemia Working Party. Blood. 2003;102:2756–62.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Guerrero SS, Ramírez-Pacheco A, Dorantes-Acosta EM, Medina-Sanson A. Analysis of genetic polymorphisms of thiopurine S-methyltransferase (TPMT) in Mexican pediatric patients with cancer. Rev Invest Clin. 2013;65:156–64.

    CAS  PubMed  Google Scholar 

  • Möricke A, Zimmermann M, Reiter A, et al. Prognostic impact of age in children and adolescents with acute lymphoblastic leukemia: data from the trials ALL-BFM 86, 90 and 95. Klin Padiatr. 2005;217:310–20. PubMed Abstract.

    Article  PubMed  Google Scholar 

  • Möricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood. 2008;111:4477–89.

    Article  PubMed  CAS  Google Scholar 

  • Mrózek K, Harper DP, Aplan PD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23:991–1010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukemia. Nature. 2007;446:758–64.

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009a;360:470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullighan CG, Zhang J, Harvey RC, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2009b;106:9414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muwakkit S, Al-Aridi C, Samra A, Saab R, Mahfouz RA, Farra C, Jeha S, Abboud MR. Implementation of an intensive risk-stratified treatment protocol for children and adolescents with acute lymphoblastic leukemia in Lebanon. Am J Hematol. 2012;87:678–83.

    Article  PubMed  Google Scholar 

  • Nguyen K, Devidas M, Cheng SC, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group Study. Leukemia. 2008;22:2142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oudot C, Auclerc MF, Levy V, et al. Prognostic factors for leukemic induction failure in children with acute lymphoblastic leukemia and outcome after salvage therapy: the FRALLE 93 study. J Clin Oncol. 2008;26:1496–503.

    Article  CAS  PubMed  Google Scholar 

  • Palmi C, Vendramini E, Silvestri D, et al. Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia. 2012;26:2245–53.

    Article  CAS  PubMed  Google Scholar 

  • Papaemmanuil E, Rapado I, Li Y, et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014;46:116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin DM, Stiller CA, Draper GJ, Bieber CA, et al., editors. International incidence of childhood cancer. IARC scientific publication no. 87. International Agency for Research on Cancer, Lyon; 1988a. p. 44–8.

    Google Scholar 

  • Parkin DM, Stiller CA, Draper GJ, Bieber CA. The international incidence of childhood cancer. Int J Cancer. 1988b;42:511–20.

    Google Scholar 

  • Parkin DM, Ferlay J, Hamdi-Cherif M, et al., editors. Cancer in Africa: epidemiology and prevention. IARC scientific publications no. 153. Lyon: IARC Press; 2003. p. 381–2.

    Google Scholar 

  • Paulsson K, Johanson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2009;48:637–60.

    Article  CAS  PubMed  Google Scholar 

  • Paulsson K, Horvat A, Strombeck B, et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2008;47:26–33.

    Article  CAS  PubMed  Google Scholar 

  • Paulsson K, Forestier E, Lilljebjörn H, et al. Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2010;107:21719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Saldivar AAA, Fajardo-Gutiérrez A, Bernáldez-Ríos R, et al. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology. BMC Cancer. 2011;11:355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer P, Goedecke W, Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000;15:289–302.

    Article  CAS  PubMed  Google Scholar 

  • Pieters R, Schrappe M, de Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicenter randomized trial. Lancet. 2007;370:240–50.

    Article  CAS  PubMed  Google Scholar 

  • Pollock BH, DeBaun MR, Camitta BM, et al. Racial differences in the survival of childhood B-precursor acute lymphoblastic leukemia: a pediatric oncology group study. J Clin Oncol. 2000;18:813–23.

    CAS  PubMed  Google Scholar 

  • Poole C, Greenland S, Luetters C, et al. Socioeconomic status and childhood leukaemia: a review. Int J Epidemiol. 2006;35:370–8.

    Article  PubMed  Google Scholar 

  • Pui CH. Acute lymphoblastic leukemia. In: Pui CH, editor. Childhood leukemias. New York: Cambridge University Press; 2006. p. 439–72.

    Chapter  Google Scholar 

  • Pui CH, Pei D, Sandlund JT, et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24:371–82.

    Google Scholar 

  • Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med. 1998;339:605–15.

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9:257–68.

    Article  PubMed  Google Scholar 

  • Pui CH, Hancock ML, Head DR, et al. Clinical significance of CD34 expression in childhood acute lymphoblastic leukemia. Blood. 1993;82:889–94.

    CAS  PubMed  Google Scholar 

  • Pui CH, Kane JR, Crist WM. Biology and treatment of infant leukemias. Leukemia. 1995;9:762–9.

    CAS  PubMed  Google Scholar 

  • Pui CH, Boyett JM, Relling MV, et al. Sex differences in prognosis for children with acute lymphoblastic leukemia. J Clin Oncol. 1999;17:818–24.

    CAS  PubMed  Google Scholar 

  • Pui CH, Boyett JM, Rivera GK, et al. Long-term results of Total Therapy studies 11, 12, 13A for childhood acute lymphoblastic leukemia at St Jude Children’s Research Hospital. Leukemia. 2000;14:2286–94.

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Chessells JM, Camita B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003a;17:700–6.

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Sandlund JT, Pei D, et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA. 2003b;290:2001–7.

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350:1535–48.

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360:2730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pui CH, Pei D, Sandlund JT, et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24:371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pullen J, Shuster JJ, Link M, et al. Significance of commonly used prognostic factors differs for children with T-cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia. 1999;13:1696–707.

    Article  CAS  PubMed  Google Scholar 

  • Raaschou-Nielsen O, Obel J, Dalton S, et al. Socioeconomic status and risk of childhood leukaemia in Denmark. Scand J Public Health. 2004;32:279–86.

    Article  PubMed  Google Scholar 

  • Raimondi SC. Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood. 1993;81:2237–51.

    CAS  PubMed  Google Scholar 

  • Raimondi SC, Peiper SC, Kitchingman GR, et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood. 1989;73:1627–34.

    CAS  PubMed  Google Scholar 

  • Raimondi SC, Behm FG, Roberson PK, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol. 1990;8:1380–8.

    CAS  PubMed  Google Scholar 

  • Raimondi SC, Zhou Y, Mathew S, et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer. 2003;98:2715–22.

    Article  PubMed  Google Scholar 

  • Rajajee S, Desikulu MV, Pushpa V. Survival of childhood acute lymphoblastic leukemia: experience in Chennai. J Trop Pediatr. 1999;45:367–70.

    Article  CAS  PubMed  Google Scholar 

  • Rajalakshmy KR, Abitha AR, Pramila R, et al. Immunophenotypic analysis of T-cell acute lymphoblastic leukemia in Madras, India. Leuk Res. 1997;21:119–24.

    Article  Google Scholar 

  • Reiter A, Schrappe M, Ludwing WD, et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL BFM 86. Blood. 1994;84:3122–33.

    CAS  PubMed  Google Scholar 

  • Ribeiro KB, Lopes LF, de Camargo B. Trends in childhood leukemia mortality in Brazil and correlation with social inequalities. Cancer. 2007;110:1823–31.

    Article  PubMed  Google Scholar 

  • Romana SP, Mauchauffe M, Le Coniat M, et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood. 1995;85:3662–70.

    CAS  PubMed  Google Scholar 

  • Roy A, Cargill A, Love S, et al. Outcome after first relapse in childhood acute lymphoblastic leukemia – lessons from the United Kingdom R2 trial. Br J Haematol. 2005;130:67–75.

    Article  PubMed  Google Scholar 

  • Rubnitz JE, Downing JR, Pui CH, et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol. 1997;15:1150–7.

    CAS  PubMed  Google Scholar 

  • Rubnitz JE, Wichlan D, Devidas M, et al. Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol. 2008;26:2186–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell LJ, Capasso M, Vater I, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114:2688–98.

    Article  CAS  PubMed  Google Scholar 

  • Sala A, Pencharz P, Barr RD. Children, cancer, and nutrition-A dynamic triangle in review. Cancer. 2004;100:677–87.

    Article  PubMed  Google Scholar 

  • Salzer WL, Devidas M, Carroll WL, et al. Long-term results of the Pediatric Oncology Group studies for childhood acute lymphoblastic leukemia 1984–2001: a report from the Children’s Oncology Group. Leukemia. 2010;24:355–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmiegelow K, Forestier E, Hellebostad M, et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia. 2010;24:345–54.

    Article  CAS  PubMed  Google Scholar 

  • Schrappe M, Hunger SP, Pui CH, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med. 2012;366:1371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder H, Garwicz S, Kristinsson J, et al. Outcome after first relapse in children with acute lymphoblastic leukemia: a population-based study of 315 patients from the Nordic Society of Pediatric Hematology and Oncology (NOPHO). Med Pediatr Oncol. 1995;25:372–8.

    Article  CAS  PubMed  Google Scholar 

  • Schultz KR, Pullen J, Sather HN, et al. Risk and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood. 2007;109:926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome –positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27:5175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A, Coleman MP. Increasing incidence of childhood leukaemia: a controversy re-examined. Br J Cancer. 2007;97:1009–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shurtleff SA, Buijs A, Behm FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995;9:1985–9.

    Google Scholar 

  • Sievers EL, Lange BJ, Alonzo TA, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood. 2003;101:3398–406.

    Article  CAS  PubMed  Google Scholar 

  • Silverman LB, Gelber RD, Young ML, et al. Induction failure in acute lymphoblastic leukemia of childhood. Cancer. 1999;85:1395–404.

    Article  CAS  PubMed  Google Scholar 

  • Sirvent N, Suciu S, Bertrand Y, et al. Overt testicular disease (OTD) at diagnosis is not associated with a poor prognosis in childhood acute lymphoblastic leukemia: result of the EORT CLG Study 58881. Pediatr Blood Cancer. 2007;49:344–8.

    Article  PubMed  Google Scholar 

  • Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14:18–24.

    CAS  PubMed  Google Scholar 

  • Smith A, Roman E, Simpson J, Ansell P, Fear NT, Eden T. Childhood leukaemia and socioeconomic status: fact or artefact? A report from the United Kingdom childhood cancer study (UKCCS). Int J Epidemiol. 2006;35:1504–13.

    Article  PubMed  Google Scholar 

  • Stewart CC, Behm FG, Carey JL, et al. US–Canadian consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: selection of antibody combinations. Cytometry. 1997;30:231–5.

    Article  CAS  PubMed  Google Scholar 

  • Stiller CA, Parkin DM. Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull. 1996;52:682–703.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Heerema N, Crotty L, et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1999;96:680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surveillance Epidemiology and End Results (SEER) cancer statistics review, 1975–2010. Section 29 childhood cancer by the ICCC. Bethesda: National Cancer Institute. http://seer.cancer.gov/archive/csr/1975_2010/results_merged/sect_29_childhood_cancer_iccc.pdf. Accessed 31 Oct 2014.

  • Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia. 2005;19:734–40.

    Article  CAS  PubMed  Google Scholar 

  • Taja-Chayeb L, Vidal-Millán S, Gutiérrez O, et al. Thiopurine S-methyltransferase gene (TMPT) polymorphisms in a Mexican population of healthy individuals and leukemic patients. Med Oncol. 2008;25:56–62.

    Article  CAS  PubMed  Google Scholar 

  • Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28:2339–47.

    Article  CAS  PubMed  Google Scholar 

  • Taskov H, Dimitrova E, Servinova M, et al. Immunological subtypes of childhood acute lymphoblastic leukemia in Bulgaria. Leuk Res. 1995;19:877–81.

    Article  CAS  PubMed  Google Scholar 

  • Trueworthy R, Shuster J, Look T, et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a pediatric oncology group study. J Clin Oncol. 1992;10:606–13.

    CAS  PubMed  Google Scholar 

  • van Dongen JJM, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Grotel M, Meijerink JPP, van Wering ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008a;22:124–31.

    Article  PubMed  CAS  Google Scholar 

  • van Grotel M, van den Heuvel-Eibrink MM, van Wering ER, et al. CD34 expression is associated with poor survival in pediatric T-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008b;51:737–40.

    Article  PubMed  Google Scholar 

  • Viana MB, Murao M, Ramos G, et al. Malnutrition as a prognostic factor in lymphoblastic leukaemia: a multivariate analysis. Arch Dis Child. 1994;71:304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb KH, Harrison G, Stevens RF, et al. Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood. 2001;98:1714–20.

    Google Scholar 

  • Williams CK. Some biological and epidemiological characteristics of human leukaemia in Africans. IARC Sci Publ. 1984;63:687–712.

    PubMed  Google Scholar 

  • Xu H, Cheng C, Devidas M, et al. ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol. 2012;30:751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1:133–43.

    Article  CAS  PubMed  Google Scholar 

  • Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2010;107:252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006;7:382–91.

    Article  CAS  PubMed  Google Scholar 

  • Yung YL, Hung CC, Chen JS, et al. IKZF1 deletions predict a poor prognosis in children with B-cell progenitor acute lymphoblastic leukemia: a multicenter analysis in Taiwan. Cancer Sci. 2011;102:1874–81.

    Article  CAS  Google Scholar 

  • Zelent A, Greaves M, Denver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004;23:4275–83.

    Article  CAS  PubMed  Google Scholar 

Acute Myeloid Leukemia

  • Abrahamsson J, Clausen N, Forestier E, et al. Long-term results in children with AML: NOPHO-AML Study Group – report of three consecutive trials. Leukemia. 2005;19:2090–100.

    Article  PubMed  CAS  Google Scholar 

  • Abrahamsson J, Clausen N, Gustafsson G, et al. Improved outcome after relapse in children with acute myeloid leukaemia. Br J Haematol. 2007;136:229–36.

    Article  PubMed  Google Scholar 

  • Abrahamsson J, Forestier E, Heldrup J, et al. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J Clin Oncol. 2011;29:310–5.

    Article  PubMed  Google Scholar 

  • Aladjidi N, Auvrignon A, Leblanc T, et al. Outcome in children with relapsed acute myeloid leukemia after initial treatment with the French Leucemie Aique Myeloide Enfant (LAME) 89/91 protocol of the French Society of Pediatric Hematology and Immunology. J Clin Oncol. 2003;21:4377–85.

    Article  CAS  PubMed  Google Scholar 

  • Aplenc R, Alonzo TA, Gerbing RB, et al. Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Blood. 2006;108:74–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arber DA, Brunning RD, Le Beau MM, et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2008. p. 110–23.

    Google Scholar 

  • Balgobind BV, Raimondi SC, Harbott J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood. 2009;114:2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balgobind BV, Zwaan CM, Pieters R, Van den Heuvel-Eibrink MM. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia. 2011;25:1239–48.

    Article  CAS  PubMed  Google Scholar 

  • Becton D, Dahl GV, Ravindranath Y, et al. Randomized use of cyclosporin A (CsA) to modulate P-glycoprotein in children with AML in remission: Pediatric Oncology Group Study 9421. Blood. 2006;107:1315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20:965–70.

    Article  CAS  PubMed  Google Scholar 

  • Brown P, McIntyre E, Rau R, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood. 2007;110:979–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carow CE, Levenstein M, Kaufmann SH, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-lmk2) in human leukemias. Blood. 1996;87:1089–96.

    CAS  PubMed  Google Scholar 

  • Cazzaniga G, Dell’Oro MG, Mecucci C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood. 2005;106:1419–22.

    Article  CAS  PubMed  Google Scholar 

  • Colombo E, Marine JC, Danovi D, et al. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol. 2002;4:529–33.

    Article  CAS  PubMed  Google Scholar 

  • Cordell JL, Pulford KA, Bigerna B, et al. Detection of normal and chimeric nucleophosmin in human cells. Blood. 1999;93:632–42.

    CAS  PubMed  Google Scholar 

  • Creutzig U, Reinhardt D. Current controversies: which patients with acute myeloid leukaemia should receive a bone marrow transplantation?–A European view. Br J Haematol. 2002;118:365–77.

    Article  PubMed  Google Scholar 

  • Creutzig U, Zimmermann M, Ritter J, et al. Definition of a standard-risk group in children with AML. Br J Haematol. 1999;104:630–9.

    Article  CAS  PubMed  Google Scholar 

  • Creutzig U, Ritter J, Zimmermann M, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93. J Clin Oncol. 2001;19:2705–13.

    CAS  PubMed  Google Scholar 

  • Creutzig U, Zimmermann M, Ritter J, et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia. 2005a;19:2030–42.

    Article  CAS  PubMed  Google Scholar 

  • Creutzig U, Reinhardt D, Diekamp S, Dworzak M, Stary J, Zimmermann M. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia. 2005b;19:1355–60.

    Article  CAS  PubMed  Google Scholar 

  • Creutzig U, Zimmermann M, Lehrnbecher T, et al. Less toxicity by optimizing chemotherapy, but not by addition of granulocyte colony-stimulating factor in children and adolescents with acute myeloid leukemia: results of AML-BFM 98. J Clin Oncol. 2006;24:4499–506.

    Article  CAS  PubMed  Google Scholar 

  • Creutzig U, Zimmermann M, Dworzak M, et al. Favourable outcome of patients with childhood acute promyelocytic leukaemia after treatment with reduced cumulative anthracycline doses. Report from AML-BFM Study Group. Br J Haematol. 2010;149:399–409.

    Article  CAS  PubMed  Google Scholar 

  • Dame C, Kirschner KM, Bartz KV, et al. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood. 2006;107:4282–90.

    Article  CAS  PubMed  Google Scholar 

  • Davies SM, Robison LL, Buckley JD, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol. 2001;19:1279–87.

    PubMed  Google Scholar 

  • Douer D, Preston-Martin S, Chang E, Nichols PW, Watkins KJ, Levine AM. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood. 1996;87:308–13.

    CAS  PubMed  Google Scholar 

  • Erickson P, Gao J, Chang KS, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood. 1992;80:1825–31.

    CAS  PubMed  Google Scholar 

  • Estey E, Plunkett W, Dixon D, Keating M, et al. Variables predicting response to high dose cytosine arabinoside therapy in patients with refractory acute leukemia. Leukemia. 1987;1:580–3.

    CAS  PubMed  Google Scholar 

  • Fenaux P, Chevret S, Guerci A, et al. Long-term follow-up confirms the benefit of all-trans retinoic acid in acute promyelocytic leukemia. European APL group. Leukemia. 2000;14:1371–7.

    Article  CAS  PubMed  Google Scholar 

  • George B, Mathews V, Poonkuzhali B, et al. Treatment of children with newly diagnosed acute promyelocytic leukemia with arsenic trioxide: a single center experience. Leukemia. 2004;18:1587–90.

    Article  CAS  PubMed  Google Scholar 

  • Gibson BES, Wheatley K, Hann IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia. 2005;19:2130–8.

    Article  CAS  PubMed  Google Scholar 

  • Gorman MF, Ji L, Ko RH, et al. Outcome for children treated for relapsed or refractory acute myelogenous leukemia (rAML): A Therapeutic Advances in Childhood Leukemia (TACL) Consortium study. Pediatr Blood Cancer. 2010;55:421–9.

    Article  PubMed  Google Scholar 

  • Gregory J, Kim H, Alonzo T, et al. Treatment of children with acute promyelocytic leukemia: results of the first North American Intergroup trial INT0129. Pediatr Blood Cancer. 2009;53:1005–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurney JG, Severson RK, Davis S, Robison LL. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer. 1995;75:2186–95.

    Google Scholar 

  • Hann IM, Stevens RF, Goldstone AH, et al. Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council’s 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood. 1997;89:2311–8.

    CAS  PubMed  Google Scholar 

  • Harrison C, Hills R, Moorman AV, et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council treatment trials AML 10 and 12. J Clin Oncol. 2010;28:2674–81.

    Article  PubMed  Google Scholar 

  • Hernandez P, Milanes MT, Svarch E, et al. High relative proportion of acute promyelocytic leukemia in children: experience of a multicenter study in Cuba. Leuk Res. 2000;24:739–40.

    Article  CAS  PubMed  Google Scholar 

  • Ho PA, Alonzo TA, Gerbing RB, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2009;113:6558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho PA, Zeng R, Alonzo TA, et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2010;116:702–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood. 2009a;113:5951–60.

    Article  CAS  PubMed  Google Scholar 

  • Hollink IH, Zwaan CM, Zimmermann M, et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia. 2009b;23:262–70.

    Article  CAS  PubMed  Google Scholar 

  • Horan JT, Alonzo TA, Lyman GH, et al. Impact of disease risk on efficacy of matched related bone marrow transplantation for pediatric acute myeloid leukemia: the Children’s Oncology Group. J Clin Oncol. 2008;26:5797–801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunte BE, Hudak S, Campbell D, et al. flk2/ flt3 ligand is a potent cofactor for the growth of primitive B cell progenitors. J Immunol. 1995;156:489–96.

    Google Scholar 

  • Kaspers GJ, Creutzig U. Pediatric acute myeloid leukemia: international progress and future directions. Leukemia. 2005;19:2025–9.

    Article  CAS  PubMed  Google Scholar 

  • Kaspers GJ, Zimmermann M, Reinhardt D, et al. Improved outcome in pediatric relapsed acute myeloid leukemia: results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J Clin Oncol. 2013;31:599–607.

    Article  CAS  PubMed  Google Scholar 

  • Kelly MJ, Horan JT, Alonzo TA, et al. Comparable survival for pediatric acute myeloid leukemia with poor-risk cytogenetics following chemotherapy, matched related donor, or unrelated donor transplantation. Pediatr Blood Cancer. 2014b;61:269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD. The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci U S A. 1996;93:14059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam K, Muselman A, Du R, et al. Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice. Blood. 2014;124:2203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange BJ, Kobrinsky N, Barnard DR, et al. Distinctive demography, biology, and outcome of acute myeloid leukemia and myelodysplastic syndrome in children with Down syndrome: Children’s Cancer Group Studies 2861 and 2891. Blood. 1998;91:608–15.

    CAS  PubMed  Google Scholar 

  • Lange BJ, Smith FO, Feusner J, et al. Outcomes in CCG-2961, a children’s oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children’s oncology group. Blood. 2008;111:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langebrake C, Creutzig U, Dworzak M, et al. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: the MRD-AML-BFM Study Group. J Clin Oncol. 2006;24:3686–92.

    Article  PubMed  Google Scholar 

  • Lekstrom-Himes J, Xanthopoulos KG. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem. 1998;273:28545–8.

    Article  CAS  PubMed  Google Scholar 

  • Lie SO, Jonmundsson G, Mellander L, et al. A population-based study of 272 children with acute myeloid leukaemia treated on two consecutive protocols with different intensity: best outcome in girls, infants, and children with Down’s syndrome. Nordic Soc Paediatr Haematol Oncol (NOPHO) Br J Haematol. 1996;94:82–8.

    CAS  Google Scholar 

  • Lie SO, Abrahamsson J, Clausen N, et al. Long-term results in children with AML: NOPHO-AML Study Group – report of three consecutive trials. Leukemia. 2005;19:2090–100.

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Tarlé SA, Hajra A, Claxton DF, Marlton P, Freedman M, Siciliano MJ, Collins FS. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261:1041–4.

    Article  CAS  PubMed  Google Scholar 

  • Liu PP, Hajra A, Wijrnenga C, Collins FS. Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood. 1995;85:2289–302.

    CAS  PubMed  Google Scholar 

  • Lyman SD, James L, Bos TV, et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell. 1993;75:1157–67.

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Morris SW, Valentine V. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet. 2001;28:220–1.

    Article  CAS  PubMed  Google Scholar 

  • Malta Corea A, Pacheco Espinoza C, Cantu Rajnolid A, et al. Childhood acute promyelocytic leukemia in Nicaragua. Ann Oncol. 1993;4:892–4.

    CAS  PubMed  Google Scholar 

  • Martinez-Climent JA, Lane NJ, Rubin CM, et al. Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia. 1995;9:95–101.

    CAS  PubMed  Google Scholar 

  • Medina-Sanson A, Ramírez-Pacheco A, Moreno-Guerrero SS, et al. Role of genetic polymorphisms of deoxycytidine kinase and cytidine deaminase to predict risk of death in children with acute myeloid leukemia. BioMed Res Int. 2015(2015), Article ID 309491, 10 p.

    Google Scholar 

  • Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97:89–94.

    Article  CAS  PubMed  Google Scholar 

  • Meshinchi S, Alonzo TA, Stirewalt DL, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108:3654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore AS, Kearns PR, Knapper S, et al. Novel therapies for children with acute myeloid leukaemia. Leukemia. 2013;27:1451–60.

    Article  CAS  PubMed  Google Scholar 

  • Niewerth D, Creutzig U, Bierings MB, Kaspers GJ. A review on allogeneic stem cell transplantation for newly diagnosed pediatric acute myeloid leukemia. Blood. 2010;116:2205–14.

    Article  CAS  PubMed  Google Scholar 

  • Ortega JJ, Madero L, Martin G, et al. Treatment with all-trans retinoic acid and anthracycline monochemotherapy for children with acute promyelocytic leukemia: a multicenter study by the PETHEMA group. J Clin Oncol. 2005;23:7632–40.

    Article  CAS  PubMed  Google Scholar 

  • Peterson LF, Yan M, Zhang DE. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood. 2007;109:4392–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pui CH, Dahl GV, Kalwinsky DK, et al. Central nervous system leukemia in children with acute nonlymphoblastic leukemia. Blood. 1985;66:1062–7.

    CAS  PubMed  Google Scholar 

  • Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29:551–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raimondi SC, Chang MN, Ravindranath Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood. 1999;94:3707–16.

    CAS  PubMed  Google Scholar 

  • Ravindranath Y, Abella E, Krischer JP, et al. Acute myeloid leukemia (AML) in Down’s syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML Study 8498. Blood. 1992;80:2210–4.

    CAS  PubMed  Google Scholar 

  • Rubnitz JE, Raimondi SC, Tong X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20:2302–9.

    Article  CAS  PubMed  Google Scholar 

  • Rubnitz JE, Razzouk BI, Lensing S, et al. Prognostic factors and outcome of recurrence in childhood acute myeloid leukemia. Cancer. 2007;109:157–63.

    Article  PubMed  Google Scholar 

  • Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukemia: results of the AML02 multicenter trial. Lancet Oncol. 2010;11:543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubnitz JE, Pounds S, Cao X, et al. Treatment outcome in older patients with childhood acute myeloid leukemia. Cancer. 2012;118:6253–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sano H, Shimada A, Tabuchi K, et al. WT1 mutation in pediatric patients with acute myeloid leukemia: a report from the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2013;98:437–45.

    Article  CAS  PubMed  Google Scholar 

  • Sanz MA, Montesinos P, Rayon C, et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high risk patients: further improvements in treatment outcome. Blood. 2010;115:5137–46.

    Article  CAS  PubMed  Google Scholar 

  • Smith FO, Alonzo TA, Gerbing RB, et al. Long-term results of children with acute myeloid leukemia: a report of three consecutive Phase III trials by the Children’s Cancer Group: CCG 251, CCG 213 and CCG 2891. Leukemia. 2005;19:2054–62.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen PH, Chen CS, Smith FO, et al. Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J Clin Invest. 1994;93:429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staffas A, Kanduri M, Hovland R, et al. Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia. Blood. 2011;118:5905–13.

    Article  CAS  PubMed  Google Scholar 

  • Steinbach D, Bader P, Willasch A, et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myelogenous leukemia. Clin Cancer Res. 2015;21:1353–9.

    Article  CAS  PubMed  Google Scholar 

  • Stevens RF, Hann IM, Wheatley K, et al. Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council’s 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol. 1998;101:130–40.

    Article  CAS  PubMed  Google Scholar 

  • Tallman MS. The expanding role of arsenic in acute promyelocytic leukemia. Semin Hematol. 2008;45:S25–9.

    Article  CAS  PubMed  Google Scholar 

  • Testi AM, Biondi A, Lo Coco F, et al. GIMEMA-AIEOPAIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood. 2005;106:447–53.

    Article  CAS  PubMed  Google Scholar 

  • von Neuhoff C, Reinhardt D, Sander B, et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to Trial AML-BFM 98. J Clin Oncol. 2010;28:2682–9.

    Article  CAS  Google Scholar 

  • Webb DK, Wheatley K, Harrison G, et al. Outcome for children with relapsed acute myeloid leukaemia following initial therapy in the Medical Research Council (MRC) AML 10 trial. MRC Childhood Leukaemia Working Party. Leukemia. 1999;13:25–31.

    Article  CAS  PubMed  Google Scholar 

  • Webb DK, Harrison G, Stevens RF, et al. Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood. 2001;98:1714–20.

    Google Scholar 

  • Wells RJ, Adams MT, Alonzo TA, et al. Mitoxantrone and cytarabine induction, high-dose cytara- bine, and etoposide intensification for pediatric patients with relapsed or refractory acute myeloid leukemia: Children’s Cancer Group Study 2951. J Clin Oncol. 2003;21:2940–7.

    Article  CAS  PubMed  Google Scholar 

  • Wheatley K, Burnett AK, Goldstone AH, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Hematol. 1999;107:69–79.

    Article  CAS  Google Scholar 

  • Woods WG, Neudorf S, Gold S, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood. 2001;97:56–62.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, McKenna RW, Wilson KS, et al. Immunophenotypic identification of acute myeloid leukemia with monocytic differentiation. Leukemia. 2006;20:1321–4.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang Y, Li J, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood. 2010;115:1697–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Medina-Sanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Medina-Sanson, A. (2016). Introduction: Childhood Leukemia. In: Mejía-Aranguré, J. (eds) Etiology of Acute Leukemias in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-05798-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05798-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05797-2

  • Online ISBN: 978-3-319-05798-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics