Skip to main content

A Mortar BDD Method for Solving Flow in Stochastic Discrete Fracture Networks

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 98)

Abstract

In this paper, flow in Discrete Fracture Networks (DFN) is solved using a Mortar Mixed Hybrid Finite Element Method. To solve large linear systems derived from a nonconforming discretization of stochastic fractured networks, a Balancing Domain Decomposition is used. Tests on three stochastically generated DFN are proposed to show the ability of the iterative solver SIDNUR to solve the flow problem.

Keywords

  • Discrete Fracture Network (DFN)
  • BDD Method
  • Sidner
  • Mixed Hybrid Finite Element Method
  • Nonconforming Discretization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-05789-7_8
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-05789-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   229.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arbogast, T., Cowsar, L.C., Wheeler, M.F., Yotov, I.: Mixed finite element methods on non-matching multiblock grids. SIAM J. Numer. Anal 37, 1295–1315 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM Math. Model. Numer. Anal. 19(1), 7–32 (1985). http://eudml.org/doc/193443

  3. Bernardi, C., Hecht, F.: Error indicators for the mortar finite element discretization of the Laplace equation. Math. Comput. 71(240), 1371–1403 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Bernardi, C., Maday, Y., Patera, A.T.: Domain decomposition by the mortar element method. In: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters (Beaune, 1992). NATO Advanced Science Institutes Series C Mathematical and Physical Sciences, vol. 384, pp. 269–286. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  5. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. XI, Paris, 1989–1991. Pitman Research Notes in Mathematics Series, vol. 299, pp. 13–51. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  6. Bernardi, C., Rebollo, T.C., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and stokes equations. ESAIM Math. Model. Numer. Anal. 42(3), 375–410 (2008) http://eudml.org/doc/250402

  7. Bjørstad, P.E., Widlund, O.B.: Solving elliptic problems on regions partitioned into substructures. In: Birkhoff, G., Schoenstadt, A. (eds.) Elliptic Problem Solvers II, pp. 245–256. Academic, New York (1984)

    CrossRef  Google Scholar 

  8. Bonnet, E., Bour, O., Odling, N., Davy, P., Main, I., Cowie, P., Berkowitz, B.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347–383 (2001)

    CrossRef  Google Scholar 

  9. Bourgat, J.F., Glowinski, R., Le Tallec, P., Vidrascu, M.: Variational formulation and algorithm for trace operator in domain decomposition calculations. In: Chan, T., Glowinski, R., Périaux, J., Widlund, O. (eds.) Domain Decomposition Methods, pp. 3–16. SIAM, Philadelphia (1989)

    Google Scholar 

  10. Cacas, M.C., Ledoux, E., de Marsily, G., Barbeau, A., Calmels, P., Gaillard, B., Magritta, R.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation. 1. the flow model. Water Resour. Res. 26(3), 479–489 (1990)

    Google Scholar 

  11. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: Cholmod, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 22: 1–22:14 (2008). doi:10.1145/1391989.1391995. http://doi.acm.org/10.1145/1391989.1391995

  12. Cowsar, L.C., Mandel, J., Wheeler, M.F.: Balancing domain decomposition for mixed finite elements. Math. Comput. 64(211), 989–1015 (1995). doi:10.2307/2153480

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Davy, P., Bour, O., de Dreuzy, J.R., Darcel, C.: Flow in Multiscale Fractal Fracture Networks, vol. 261, pp. 31–45. Geological Society, London (2006). Special publications

    Google Scholar 

  14. Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J.R., Munier, R.: A likely universal model of fracture scaling and its consequence for crustal hydromechanics. J. Geophys. Res. 115, B10411 (2010)

    CrossRef  Google Scholar 

  15. de Dreuzy, J.R., Pichot, G., Poirriez, B., Erhel, J.: Synthetic benchmark for modeling flow in 3D fractured media. Comput. Geosci. 50, 59–71 (2013). doi:10.1016/j.cageo.2012.07.025. http://hal.inria.fr/hal-00735675

  16. Dershowitz, W.S., Einstein, H.H.: Characterizing rock joint geometry with joint system models. Rock Mech. Rock Eng. 21(1), 21–51 (1988)

    CrossRef  Google Scholar 

  17. Dohrmann, C.R.: A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25, 246–258 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Dryja, M., Proskurowski, W.: On preconditioners for mortar discretization of elliptic problems. Numer. Linear Algebra Appl. 10(1–2), 65–82 (2003). doi:10.1002/nla.312. http://dx.doi.org/10.1002/nla.312

  19. Dverstop, B., Andersson, J.: Application of the discrete fracture network concept with field data: possibilities of model calibration and validation. Water Resour. Res. 25(3), 540–550 (1989)

    CrossRef  Google Scholar 

  20. Erhel, J., Guyomarc’h, F.: An augmented conjugate gradient method for solving consecutive symmetric positive definite systems. SIAM J. Matrix Anal. Appl. 21(4), 1279–1299 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Erhel, J., de Dreuzy, J.R., Poirriez, B.: Flow simulations in three-dimensional discrete fracture networks. SIAM J. Sci. Comput. 31(4), 2688–2705 (2009). doi:10.1137/080729244

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Frank, J., Vuik, C.: On the construction of deflation-based preconditioners. SIAM J. Sci. Comput. 23(2), 442–462 (2001). doi:10.1137/S1064827500373231. http://dx.doi.org/10.1137/S1064827500373231

  23. Frey, P.J., George, P.L.: Maillages: applications aux éléments finis. Hermès sciences publ. DL1999 (53-Mayenne), Paris (1999). http://opac.inria.fr/record=b1094298

  24. Gander, M.J., Tu, X.: On the origins of iterative substructuring methods. In: Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2014) (same volume)

    Google Scholar 

  25. Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: Glowinski, R., Golub, G.H., Meurant, G.A., Periaux, J. (eds.) Domain Decomposition Methods for Partial Differential Equations, pp. 144–172. SIAM, Philadelphia (1988)

    Google Scholar 

  26. Kim, H.H., Dryja, M., Widlund, O.B.: A BDDC method for mortar discretizations using a transformation of basis. SIAM J. Numer. Anal. 47(1), 136–157 (2008)

    CrossRef  MathSciNet  Google Scholar 

  27. Le Tallec, P.: Domain decomposition methods in computational mechanics. In: Oden, J.T. (ed.) Computational Mechanics Advances, vol. 1, No. 2, pp. 121–220. North-Holland, Amsterdam (1994)

    Google Scholar 

  28. Le Tallec, P., De Roeck, Y., Vidrascu, M.: Domain decomposition methods for large linearly elliptic three-dimensional problems. J. Comput. Appl. Math. 34, 93–117 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  29. Mandel, J.: Balancing domain decomposition. Commun. Appl. Numer. Methods 9, 233–241 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Mandel, J., Brezina, M.: Balancing domain decomposition: theory and computations in two and three dimensions. Technical Report UCD/CCM 2, Center for Computational Mathematics, University of Colorado at Denver (1993)

    Google Scholar 

  31. Meurant, G.: Computer Solution of Large Linear Systems. Elsevier Science B.V., Amsterdam (1999)

    MATH  Google Scholar 

  32. Pencheva, G., Yotov, I.: Balancing domain decomposition for mortar mixed finite element methods. Numer. Linear Algebra Appl. 10(1–2), 159–180 (2003). doi:10.1002/nla.316. http://dx.doi.org/10.1002/nla.316

  33. Pichot, G., Erhel, J., de Dreuzy, J.R.: A mixed hybrid mortar method for solving flow in discrete fracture networks. Appl. Anal. 89(10), 1629–1643 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  34. Pichot, G., Erhel, J., de Dreuzy, J.R.: A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks. SIAM J. Sci. Comput. 34(1), B86–B105 (20 pp.) (2012)

    Google Scholar 

  35. Poirriez, B.: Etude et mise en oeuvre d’une méthode de sous-domaines pour la modélisation de l’écoulement dans des réseaux de fractures en 3d. Ph.D. thesis, University of Rennes 1 (2011)

    Google Scholar 

  36. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)

    MATH  Google Scholar 

  37. Tang, J.M., Nabben, R., Vuik, C., Erlangga, Y.A.: Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput. 39(3), 340–370 (2009). doi:10.1007/s10915-009-9272-6. http://dx.doi.org/10.1007/s10915-009-9272-6

  38. Vohralik, M., Maryska, J., Severyn, O.: Mixed and nonconforming finite element methods on a system of polygons. Appl. Numer. Math. 57, 176–193 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  39. Wheeler, M.F., Yotov, I.: A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43(3), 1021–1042 (2005). doi:10.1137/S0036142903431687. http://dx.doi.org/10.1137/S0036142903431687

Download references

Acknowledgements

This work was supported by the French National Research Agency, with the ANR-07-CIS7 project MICAS, and by INRIA with the ARC-INRIA GEOFRAC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géraldine Pichot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pichot, G., Poirriez, B., Erhel, J., de Dreuzy, JR. (2014). A Mortar BDD Method for Solving Flow in Stochastic Discrete Fracture Networks. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_8

Download citation