Skip to main content

Parallel Coupled and Uncoupled Multilevel Solvers for the Bidomain Model of Electrocardiology

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Abstract

We study two parallel coupled and uncoupled multilevel solvers for the cardiac Bidomain model, describing the bioelectric activity of the cardiac tissue and consisting of a system of a non-linear parabolic reaction-diffusion partial differential equation (PDE) and an elliptic linear PDE. The evolution equation is coupled through the non-linear reaction term with a stiff system of ordinary differential equations, describing the ionic currents through the cellular membrane. The uncoupled solver is based on splitting the parabolic PDE from the elliptic PDE at each time step. The resulting discrete linear systems are solved by Multilevel Additive Schwarz methods. Three-dimensional parallel numerical tests on a BlueGene cluster show that the uncoupled multilevel technique is as scalable as the coupled one, but it is more efficient because it has a faster convergence rate. Finally, in all parallel numerical tests considered, the uncoupled technique proposed is always about 1.5 times faster than the coupled approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balay, S., et al.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012)

    Google Scholar 

  2. Colli Franzone, P., Pavarino, L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14, 883–911 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46, 2443–2468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fernandez, M.A., Zemzemi, N.: Decoupled time-marching schemes in computational cardiac electrophysiology. Math. Biosci. 226, 58–75 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gerardo Giorda, L., et al.: A model-based block-triangular preconditioner for the bidomain system in electrocardiology. J. Comput. Phys. 228, 3625–3639 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gerardo Giorda, L., et al.: Optimized Schwarz coupling of bidomain and monodomain models in electrocardiology. Math. Model. Numer. Anal. 45, 309–334 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. LeGrice, I.J., et al.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol. 269, H571–H582 (1995)

    Google Scholar 

  8. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991)

    Article  Google Scholar 

  9. Munteanu, M., Pavarino, L.F., Scacchi, S.: A scalable Newton-Krylov-Schwarz method for the bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31, 3861–3883 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Murillo, M., Cai, X.C.: A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numer. Linear Algebra Appl. 11, 261–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31, 420–443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pennacchio, M., Simoncini, V.: Algebraic multigrid preconditioners for the bidomain reaction-diffusion system. Appl. Numer. Math. 59, 3033–3050 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pennacchio, M., Simoncini, V.: Fast structured AMG preconditioning for the bidomain model in electrocardiology. SIAM J. Sci. Comput. 33, 721–745 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37, 1333–1370 (2006)

    Article  MATH  Google Scholar 

  15. Plank, G., et al.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54, 585–596 (2007)

    Article  Google Scholar 

  16. Scacchi, S.: A hybrid multilevel Schwarz method for the bidomain model. Comput. Methods Appl. Mech. Eng. 197, 4051–4061 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Southern, J.A., et al.: Solving the coupled system improves computational efficiency of the bidomain equations. IEEE Trans. Biomed. Eng. 56, 2404–2412 (2009)

    Article  Google Scholar 

  18. Sundnes, J., et al.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Eng. 5, 397–409 (2002)

    Article  Google Scholar 

  19. Sundnes, J., Lines, G.T., Tveito, A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194, 233–248 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Toselli, A., Widlund, O.B.: Domain Decomposition Methods - Algorithms and Theory. Springer, Berlin (2004)

    Google Scholar 

  21. Vigmond, E.J., Aguel, F., Trayanova, N.A.: Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49, 1260–1269 (2002)

    Article  Google Scholar 

  22. Vigmond, E.J., et al.: Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18 (2008)

    Article  Google Scholar 

  23. Weber dos Santos, R., et al.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51, 1960–1968 (2004)

    Google Scholar 

  24. Zampini, S.: Balancing Neumann-Neumann methods for the cardiac bidomain model. Numer. Math. 123, 363–393 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zampini, S.: Inexact BDDC methods for the cardiac bidomain model. In: Proceedings of DD21 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Scacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Colli Franzone, P., Pavarino, L.F., Scacchi, S. (2014). Parallel Coupled and Uncoupled Multilevel Solvers for the Bidomain Model of Electrocardiology. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_22

Download citation

Publish with us

Policies and ethics