Skip to main content

Methods for Energy System Modeling

  • Chapter
  • 1401 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this book techno-economic models are used to examine the cost-optimal future deployment of renewable power generation technologies as well as to gain methodological insights. This chapter introduces modeling concepts and methodologies required to construct these models, with main focus on economic models and methodologies. The first section covers general aspects and offers a brief introduction to decision theory, followed by an overview of equilibrium modeling approaches and their application to energy system modeling. The model class of mathematical programs and corresponding solution methods are then discussed in sections 3.3 and 3.4, respectively. Finally, section 3.5 is dedicated to uncertainty and stochastic modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, T.: Constraint Integer Programming. Verlag Dr. Hut, Munich (2008)

    Google Scholar 

  2. Arrow, K.J., Debreu, G.: Existence of an Equilibrium for a Competitive Economy. Econometrica 22(3), 265–290 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bamberg, G., Coenenberg, A.G.: Betriebswirtschaftliche Entscheidungslehre, 12th revised edn. Verlag Franz Vahlen, Munich (2004)

    Google Scholar 

  4. Bannock, G., Baxter, R.E., Davis, E.: Dictionary of Economics, 4th edn. Bloomberg Press, Princeton (2003)

    Google Scholar 

  5. Beale, E.M.L.: On Minizing A Convex Function Subject to Linear Inequalities. Journal of the Royal Statistical Society. Series B 17(2), 173–184 (1955)

    MATH  MathSciNet  Google Scholar 

  6. Bellman, R.: Dynamic Programming. Princeton Univ. Press, Princeton (1957)

    MATH  Google Scholar 

  7. Bergman, L.: Energy Policy Modeling: A Survey of General Equilibrium Approaches. Journal of Policy Modeling 10(3), 377–399 (1988)

    Article  MathSciNet  Google Scholar 

  8. Bernoulli, D.: Specimen theoriae novae de mensura sortis. In: Commentarii Academiae Scientiarum Imperialis Petropolitanae, vol. 5, pp. 175–192. Petersburg (1738)

    Google Scholar 

  9. Bernoulli, D.: Exposition of a New Theory on the Measurement of Risk: Translated by L. Sommer. Econometrica 22(1), 23–36 (1954)

    Google Scholar 

  10. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer, New York (1997)

    MATH  Google Scholar 

  11. Black, J., Hashimzade, N., Miles, G.D.: A dictionary of economics. Oxford Univ. Press, Oxford (2009)

    Book  Google Scholar 

  12. Böhringer, C.: Allgemeine Gleichgewichtsmodelle als Instrument der energie- und umweltpolitischen Analyse: Theoretische Grundlagen und empirische Anwendung. Peter Lang, Frankfurt a. M. (1996)

    Google Scholar 

  13. Böhringer, C., Rutherford, T.F.: Combining bottom-up and top-down. Energy Economics 30(2), 574–596 (2008)

    Article  Google Scholar 

  14. Bosetti, V., Tavoni, M.: Uncertain R&D, backstop technology and GHGs stabilization. Energy Economics 31(suppl. 1), S18–S26 (2009)

    Google Scholar 

  15. Chiang, A.C., Wainwright, K.: Fundamental methods of mathematical economics, 4th international edn. McGraw-Hill, Boston (2005)

    Google Scholar 

  16. Courtney, H., Kirkland, J., Viguerie, P.: Strategy under uncertainty - What makes for a good strategy in highly uncertain business environments. Harvard Business Review 75(6), 66–81 (1997)

    Google Scholar 

  17. Crowder, H., Johnson, E.L., Padberg, M.: Solving Large-Scale Zero-One Linear Programming Problems. Operations Research 31(5), 803–834 (1983)

    Article  MATH  Google Scholar 

  18. Dantzig, G.B.: Programming in a Linear Structure. Econometrica 17(1), 73–74 (1949a)

    Google Scholar 

  19. Dantzig, G.B.: Programming of interdependent activities II: Mathematical model. Econometrica 17(3-4), 200–211 (1949b)

    Article  MathSciNet  Google Scholar 

  20. Dantzig, G.B.: Linear Programming under Uncertainty. Management Science 1(3-4), 197–206 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dantzig, G.B.: Linear Programming and Extensions. Princeton Univ. Press, Princeton (1963)

    MATH  Google Scholar 

  22. Gervaise, I.: The System or Theory of the Trade of the World. H. Woodfall, London (1720)

    Google Scholar 

  23. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64(5), 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hillier, F.S., Hillier, M.S.: Introduction to Management Science, 2nd edn. McGraw-Hill/ Irwin, Boston (2003)

    Google Scholar 

  25. Hourcade, J.-C., Jaccard, M., Bataille, C., Ghersi, F.: Hybrid Modeling: New Answers to Old Challenges. The Energy Journal 27(special issue), 1–12 (2006)

    Google Scholar 

  26. Hudson, E.A., Jorgenson, D.W.: U. S. Energy Policy and Economic Growth, 1975-2000. The Bell Journal of Economics and Management Science 5(2), 461–514 (1974)

    Article  Google Scholar 

  27. IBM ILOG. CPLEX Optimizer (2011)

    Google Scholar 

  28. Kann, A., Weyant, J.: Approaches for performing uncertainty analysis in large-scale energy/economic policy models. Environmental Modeling and Assessment 5(1), 29–46 (2000)

    Article  Google Scholar 

  29. Kantorovich, L.V.: Mathematical Methods of Organizing and Planning Production: Translated by W. Campbell and W. H. Marlow. Management Science 6(4), 366–422 (1960)

    Google Scholar 

  30. Karmarkar, N.: A New Polynomial-Time Algorithm for Linear Programming. Combinatorica 4(4), 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Knight, F.H.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)

    Google Scholar 

  32. Köhler, J., Barker, T., Anderson, D., Pan, H.: Combining Energy Technology Dynamics and Macroeconometrics: The E3MG Model. The Energy Journal 27(special issue 2), 113–134 (2006)

    Google Scholar 

  33. Kramer, G.: Entscheidungsproblem, Entscheidungskriterien bei völliger Ungewißheit und Chernoffsches Axiomensystem. Metrika 11(1), 15–38 (1967)

    Article  Google Scholar 

  34. Kuhn, H.W., Tucker, A.W.: Nonlinear Programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. Univ. of California Press, Berkeley (1951)

    Google Scholar 

  35. Land, A.H., Doig, A.G.: An Automatic Method of Solving Discrete Programming Problems. Econometrica 28(3), 497–520 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  36. Manne, A.S.: ETA-MACRO: A Model of Energy-Economy Interactions. In: Hitch, C.J. (ed.) Modeling energy-economy interactions: Five approaches, pp. 1–45. Resources for the Future, Washington (1977)

    Google Scholar 

  37. Messner, S., Schrattenholzer, L.: MESSAGE-MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25(3), 267–282 (2000)

    Article  Google Scholar 

  38. Nordhaus, W.D., Houthakker, H., Solow, R.: The Allocation of Energy Resources. Brookings Papers on Economic Activity 1973(3), 529–576 (1973)

    Article  Google Scholar 

  39. Sydsæter, K., Hammond, P.: Mathematik für Wirtschaftswissenschaftler: Basiswissen mit Praxisbezug: Translated by F. Böker, 3rd revised edn. Pearson, Munich (2009)

    Google Scholar 

  40. van der Zwaan, B., Seebregts, A.: Endogenous learning in climate-energy-economic models - an inventory of key uncertainties. International Journal for Energy Technology and Policy 2(1-2), 130–141 (2004)

    Article  Google Scholar 

  41. Wald, A.: Über einige Gleichungssysteme der mathematischen Ökonomie. Zeitschrift für Nationalökonomie 7(5), 637–670 (1936)

    MATH  Google Scholar 

  42. Walras, L.: Eléments d’économie politique pure, ou théorie de la richesse sociale. L. Corbaz & Cie, Lausanne (1874)

    Google Scholar 

  43. Weber, C.: Uncertainty in the Electric Power Industry: Methods and Models for Decision Support. International Series in Operations Research & Management Science, vol. 77. Springer, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Wagner .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wagner, F. (2014). Methods for Energy System Modeling. In: Renewables in Future Power Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-05780-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05780-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05779-8

  • Online ISBN: 978-3-319-05780-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics